157 research outputs found

    Wheat rusts never sleep but neither do sequencers: will pathogenomics transform the way plant diseases are managed?

    Get PDF
    Field pathogenomics adds highly informative data to surveillance surveys by enabling rapid evaluation of pathogen variability, population structure and host genotype

    Genetic analysis of safflower domestication.

    Get PDF
    BackgroundSafflower (Carthamus tinctorius L.) is an oilseed crop in the Compositae (a.k.a. Asteraceae) that is valued for its oils rich in unsaturated fatty acids. Here, we present an analysis of the genetic architecture of safflower domestication and compare our findings to those from sunflower (Helianthus annuus L.), an independently domesticated oilseed crop within the same family.We mapped quantitative trait loci (QTL) underlying 24 domestication-related traits in progeny from a cross between safflower and its wild progenitor, Carthamus palaestinus Eig. Also, we compared QTL positions in safflower against those that have been previously identified in cultivated x wild sunflower crosses to identify instances of colocalization.ResultsWe mapped 61 QTL, the vast majority of which (59) exhibited minor or moderate phenotypic effects. The two large-effect QTL corresponded to one each for flower color and leaf spininess. A total of 14 safflower QTL colocalized with previously reported sunflower QTL for the same traits. Of these, QTL for three traits (days to flower, achene length, and number of selfed seed) had cultivar alleles that conferred effects in the same direction in both species.ConclusionsAs has been observed in sunflower, and unlike many other crops, our results suggest that the genetics of safflower domestication is quite complex. Moreover, our comparative mapping results indicate that safflower and sunflower exhibit numerous instances of QTL colocalization, suggesting that parallel trait transitions during domestication may have been driven, at least in part, by parallel genotypic evolution at some of the same underlying genes

    High-Resolution Analysis of the Efficiency, Heritability, and Editing Outcomes of CRISPR/Cas9-Induced Modifications of NCED4 in Lettuce (Lactuca sativa).

    Get PDF
    CRISPR/Cas9 is a transformative tool for making targeted genetic alterations. In plants, high mutation efficiencies have been reported in primary transformants. However, many of the mutations analyzed were somatic and therefore not heritable. To provide more insights into the efficiency of creating stable homozygous mutants using CRISPR/Cas9, we targeted LsNCED4 (9-cis-EPOXYCAROTENOID DIOXYGENASE4), a gene conditioning thermoinhibition of seed germination in lettuce. Three constructs, each capable of expressing Cas9 and a single gRNA targeting different sites in LsNCED4, were stably transformed into lettuce (Lactuca sativa) cvs. Salinas and Cobham Green. Analysis of 47 primary transformants (T1) and 368 T2 plants by deep amplicon sequencing revealed that 57% of T1 plants contained events at the target site: 28% of plants had germline mutations in one allele indicative of an early editing event (mono-allelic), 8% of plants had germline mutations in both alleles indicative of two early editing events (bi-allelic), and the remaining 21% of plants had multiple low frequency mutations indicative of late events (chimeric plants). Editing efficiency was similar in both genotypes, while the different gRNAs varied in efficiency. Amplicon sequencing of 20 T1 and more than 100 T2 plants for each of the three gRNAs showed that repair outcomes were not random, but reproducible and characteristic for each gRNA. Knockouts of NCED4 resulted in large increases in the maximum temperature for seed germination, with seeds of both cultivars capable of germinating >70% at 37°. Knockouts of NCED4 provide a whole-plant selectable phenotype that has minimal pleiotropic consequences. Targeting NCED4 in a co-editing strategy could therefore be used to enrich for germline-edited events simply by germinating seeds at high temperature

    Perception of bitterness, sweetness and liking of different genotypes of lettuce

    Get PDF
    Lettuce is an important leafy vegetable, consumed across the world, containing bitter sesquiterpenoid lactone (SL) compounds that may negatively affect consumer acceptance and consumption. We assessed liking of samples with differing absolute abundance and different ratios of bitter:sweet compounds by analysing recombinant inbred lines (RILs) from an interspecific lettuce mapping population derived from a cross between a wild (L. serriola acc. UC96US23) and domesticated lettuce, (L. sativa, cv. Salinas). We found that the ratio of bitter:sweet compounds was a key determinant of bitterness perception and liking. We were able to demonstrate that SLs such as 8-deoxylactucin-15-sulphate contribute most strongly to bitterness perception, whilst 15-p-hydroxylphenylacetyllactucin-8-sulphate does not contribute to bitter taste. Glucose was the sugar most highly correlated with sweetness perception. There is a genetic basis to the biochemical composition of lettuce. This information will be useful in lettuce breeding programmes in order to produce leaves with more favourable taste profiles

    The inheritance of resistance to bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians in three lettuce cultivars.

    Get PDF
    Lettuce yields can be reduced by the disease bacterial leaf spot (BLS) caused by the pathogen Xanthomonas campestris pv. vitians (Xcv) and host resistance is the most feasible method to reduce disease losses. The cultivars La Brillante, Pavane and Little Gem express an incompatible host-pathogen interaction as a hypersensitive response (HR) to California strains of Xcv resulting in resistance. Little was known about the inheritance of resistance; however, resistance to other lettuce pathogens is often determined by resistance gene candidates (RGCs) encoding nucleotide-binding leucine-rich repeat (NB-LRR) proteins. Therefore, we determined the inheritance of BLS resistance in the cultivars La Brillante, Little Gem and Pavane and mapped it relative to RGCs. The reaction to Xcv was analyzed in nine F1, F2 and recombinant inbred line populations of lettuce from HR×compatible or HR×HR crosses. The HR in La Brillante, Pavane and Little Gem is conditioned by single dominant genes, which are either allelic or closely linked genes. The resistance gene in La Brillante was designated Xanthomonas resistance 1 (Xar1) and mapped to lettuce linkage group 2. Xar1 is present in a genomic region that contains numerous NB-LRR encoding RGCs and functional pathogen resistance loci in the RGC2 family. The Xar1 gene confers a high level of BLS resistance in the greenhouse and field that can be introgressed into commercial lettuce cultivars to reduce BLS losses using molecular markers


    Get PDF
    The genetic basis of inherited traits has been studied through di erent approaches in many areas of science. Examples include quantitative trait locus (QTL) analysis and mutant analysis in genetics, genome sequencing and gene expression analysis in genomics. Each of these approaches is used for the investigation of complex traits, such as disease resistance, but also provides knowledge on components of complex biological systems. We introduce a novel functional genomics approach that integrates two areas, genetics and genomics, by applying QTL analysis to quantitative di erences in the mRNA abundance of trait-related genes. This approach allows comprehensive dissection of regulatory networks for complex traits at a systems biology level. We also address statistical issues, and suggest guidelines for future experiments in this new framework

    A target enrichment method for gathering phylogenetic information from hundreds of loci: An example from the Compositae.

    Get PDF
    UnlabelledPremise of the studyThe Compositae (Asteraceae) are a large and diverse family of plants, and the most comprehensive phylogeny to date is a meta-tree based on 10 chloroplast loci that has several major unresolved nodes. We describe the development of an approach that enables the rapid sequencing of large numbers of orthologous nuclear loci to facilitate efficient phylogenomic analyses. •Methods and resultsWe designed a set of sequence capture probes that target conserved orthologous sequences in the Compositae. We also developed a bioinformatic and phylogenetic workflow for processing and analyzing the resulting data. Application of our approach to 15 species from across the Compositae resulted in the production of phylogenetically informative sequence data from 763 loci and the successful reconstruction of known phylogenetic relationships across the family. •ConclusionsThese methods should be of great use to members of the broader Compositae community, and the general approach should also be of use to researchers studying other families
    • …