368 research outputs found

    Glatiramer acetate does not protect from acute ischemic stroke in mice

    Get PDF
    Background The role of the immune system in the pathophysiology of acute ischemic stroke is increasingly recognized. However, targeted treatment strategies to modulate immunological pathways in stroke are still lacking. Glatiramer acetate is a multifaceted immunomodulator approved for the treatment of relapsing-remitting multiple sclerosis. Experimental studies suggest that glatiramer acetate might also work in other neuroinflammatory or neurodegenerative diseases apart from multiple sclerosis. Findings We evaluated the efficacy of glatiramer acetate in a mouse model of brain ischemia/reperfusion injury. 60 min of transient middle cerebral artery occlusion was induced in male C57Bl/6 mice. Pretreatment with glatiramer acetate (3.5 mg/kg bodyweight) 30 min before the induction of stroke did not reduce lesion volumes or improve functional outcome on day 1. Conclusions Glatiramer acetate failed to protect from acute ischemic stroke in our hands. Further studies are needed to assess the true therapeutic potential of glatiramer acetate and related immunomodulators in brain ischemia

    Activity Modes in Thalamocortical Relay Neurons are Modulated by Gq/G11 Family G-proteins – Serotonergic and Glutamatergic Signaling

    Get PDF
    In thalamocortical relay (TC) neurons, G-protein-coupled receptors play an important part in the control of activity modes. A conditional Gαq knockout on the background of a constitutive Gα11 knockout (Gαq/Gα11−/−) was used to determine the contribution of Gq/G11 family G-proteins to metabotropic serotonin (5-HT) and glutamate (Glu) function in the dorsal part of the lateral geniculate nucleus (dLGN). In control mice, current clamp recordings showed that α-m-5-HT induced a depolarization of Vrest which was sufficient to suppress burst firing. This depolarization was concentration-dependent (100 μM: +6 ± 1 mV, n = 10; 200 μM: +10 ± 1 mV, n = 7) and had a conditioning effect on the activation of other Gαq-mediated pathways. The depolarization was significantly reduced in Gαq/Gα11−/− (100 μM: 3 ± 1 mV, n = 11; 200 μM: 5 ± 1 mV, n = 6) and was apparently insufficient to suppress burst firing. Activating Gαq-coupled muscarinic receptors affected the magnitude of α-m-5-HT-induced effects in a reciprocal manner. Furthermore, the depolarizing effect of mGluR1 agonists was significantly reduced in Gαq/Gα11−/− mice. Immunohistochemical stainings revealed binding of 5-HT2CR- and mGluR1α-, but not of 5-HT2AR-specific antibodies in the dLGN of Gαq/Gα11−/− mice. In conclusion, these findings demonstrate that transmitters of ascending brainstem fibers and corticofugal fibers both signal via a central element in the form of Gq/G11-mediated pathways to control activity modes in the TC system

    Report on the 1st scientific meeting of the "Verein zur Förderung des Wissenschaftlichen Nachwuchses in der Neurologie" (NEUROWIND e.V.) held in Mittenwalde/Motzen, Germany, Oct. 30th - Nov. 1st, 2009

    Get PDF
    Report on the 1st scientific meeting of the "Verein zur Forderung des Wissenschaftlichen Nachwuchses in der Neurologie" (NEUROWIND e.V.) held in Mittenwalde/Motzen, Germany, Oct. 30th - Nov. 1st, 2009 A scientific meeting repor

    Report on the 3'rd scientific meeting of the "Verein zur Förderung des Wissenschaftlichen Nachwuchses in der Neurologie" (NEUROWIND e.V.) held in Motzen, Germany, Nov. 4'th - Nov. 6'th, 2011

    Get PDF
    From November 4th- 6th 2011, the 3rd NEUROWIND e.V. meeting was held in Motzen, Brandenburg, Germany. Like in the previous years, the meeting provided an excellent platform for scientific exchange and the presentation of innovative projects for young colleagues in the fields of neurovascular research, neuroinflammation and neurodegeneration. As kick-off to the scientific sessions, Reinhard Hohlfeld, Head of the Institute for Clinical Neuroimmunology in Munich, gave an illustrious overview on the many fascinations of neuroimmunologic research. A particular highlight on the second day of the meeting was the award of the 1’st NEUROWIND e.V. prize for young academics in the field of experimental neurology. This award is posted for young colleagues under the age of 35 with a significant achievement in the field of neurovascular research, neuroinflammation or neurodegeneration and comprises an amount of 20.000 Euro, founded by Merck Serono GmbH, Darmstadt. Germany. The first prize was awarded to Ivana Nikic from Martin Kerschensteiner’s group in Munich for her brilliant work on a reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis, published in Nature Medicine in 2011. This first prize award ceremony was a great incentive for the next call for proposals now upcoming in 2012

    Report on the 2nd scientific meeting of the "Verein zur Förderung des Wissenschaftlichen Nachwuchses in der Neurologie" (NEUROWIND e.V.) held in Motzen, Germany, Oct. 29'th - Oct. 31'st, 2010

    Get PDF
    From November 4th- 6th 2011, the 3rd NEUROWIND e.V. meeting was held in Motzen, Brandenburg, Germany. Like in the previous years, the meeting provided an excellent platform for scientific exchange and the presentation of innovative projects for young colleagues in the fields of neurovascular research, neuroinflammation and neurodegeneration. As kick-off to the scientific sessions, Reinhard Hohlfeld, Head of the Institute for Clinical Neuroimmunology in Munich, gave an illustrious overview on the many fascinations of neuroimmunologic research. A particular highlight on the second day of the meeting was the award of the 1'st NEUROWIND e.V. prize for young academics in the field of experimental neurology. This award is posted for young colleagues under the age of 35 with a significant achievement in the field of neurovascular research, neuroinflammation or neurodegeneration and comprises an amount of 20.000 Euro, founded by Merck Serono GmbH, Darmstadt. Germany. The first prize was awarded to Ivana Nikic from Martin Kerschensteiner's group in Munich for her brilliant work on a reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis, published in Nature Medicine in 2011. This first prize award ceremony was a great incentive for the next call for proposals now upcoming in 2012

    Two pore domain potassium channels in cerebral ischemia: a focus on K2P9.1 (TASK3, KCNK9)

    Get PDF
    BACKGROUND: Recently, members of the two-pore domain potassium channel family (K2P channels) could be shown to be involved in mechanisms contributing to neuronal damage after cerebral ischemia. K2P3.1-/- animals showed larger infarct volumes and a worse functional outcome following experimentally induced ischemic stroke. Here, we question the role of the closely related K2P channel K2P9.1. METHODS: We combine electrophysiological recordings in brain-slice preparations of wildtype and K2P9.1-/- mice with an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of K2P9.1 in stroke formation. RESULTS: Patch-clamp recordings reveal that currents mediated through K2P9.1 can be obtained in slice preparations of the dorsal lateral geniculate nucleus (dLGN) as a model of central nervous relay neurons. Current characteristics are indicative of K2P9.1 as they display an increase upon removal of extracellular divalent cations, an outward rectification and a reversal potential close to the potassium equilibrium potential. Lowering extracellular pH values from 7.35 to 6.0 showed comparable current reductions in neurons from wildtype and K2P9.1-/- mice (68.31 +/- 9.80% and 69.92 +/- 11.65%, respectively). These results could be translated in an in vivo model of cerebral ischemia where infarct volumes and functional outcomes showed a none significant tendency towards smaller infarct volumes in K2P9.1-/- animals compared to wildtype mice 24 hours after 60 min of tMCAO induction (60.50 +/- 17.31 mm3 and 47.10 +/- 19.26 mm3, respectively). CONCLUSIONS: Together with findings from earlier studies on K2P2.1-/- and K2P3.1-/- mice, the results of the present study on K2P9.1-/- mice indicate a differential contribution of K2P channel subtypes to the diverse and complex in vivo effects in rodent models of cerebral ischemia

    Modulation of Calcium-Dependent Inactivation of L-Type Ca2+ Channels via β-Adrenergic Signaling in Thalamocortical Relay Neurons

    Get PDF
    Neuronal high-voltage-activated (HVA) Ca2+ channels are rapidly inactivated by a mechanism that is termed Ca2+-dependent inactivation (CDI). In this study we have shown that β-adrenergic receptor (βAR) stimulation inhibits CDI in rat thalamocortical (TC) relay neurons. This effect can be blocked by inhibition of cAMP-dependent protein kinase (PKA) with a cell-permeable inhibitor (myristoylated protein kinase inhibitor-(14–22)-amide) or A-kinase anchor protein (AKAP) St-Ht31 inhibitory peptide, suggesting a critical role of these molecules downstream of the receptor. Moreover, inhibition of protein phosphatases (PP) with okadaic acid revealed the involvement of phosphorylation events in modulation of CDI after βAR stimulation. Double fluorescence immunocytochemistry and pull down experiments further support the idea that modulation of CDI in TC neurons via βAR stimulation requires a protein complex consisting of CaV1.2, PKA and proteins from the AKAP family. All together our data suggest that AKAPs mediate targeting of PKA to L-type Ca2+ channels allowing their phosphorylation and thereby modulation of CDI

    Increased cortical curvature reflects white matter atrophy in individual patients with early multiple sclerosis

    Get PDF
    AbstractObjectiveWhite matter atrophy occurs independently of lesions in multiple sclerosis. In contrast to lesion detection, the quantitative assessment of white matter atrophy in individual patients has been regarded as a major challenge. We therefore tested the hypothesis that white matter atrophy (WMA) is present at the very beginning of multiple sclerosis (MS) and in virtually each individual patient. To find a new sensitive and robust marker for WMA we investigated the relationship between cortical surface area, white matter volume (WMV), and whole-brain-surface-averaged rectified cortical extrinsic curvature. Based on geometrical considerations we hypothesized that cortical curvature increases if WMV decreases and the cortical surface area remains constant.MethodsIn total, 95 participants were enrolled: 30 patients with early and advanced relapsing–remitting MS; 30 age-matched control subjects; 30 patients with Alzheimer's disease (AD) and 5 patients with clinically isolated syndrome (CIS).Results29/30 MS and 5/5 CIS patients showed lower WMV than expected from their intracranial volume (average reduction 13.0%, P<10−10), while the cortical surface area showed no significant differences compared with controls. The estimated WMV reductions were correlated with an increase in cortical curvature (R=0.62, P=0.000001). Discriminant analysis revealed that the curvature increase was highly specific for the MS and CIS groups (96.7% correct assignments between MS and control groups) and was significantly correlated with reduction of white matter fractional anisotropy, as determined by diffusion tensor imaging and the Expanded Disability Status Scale. As expected by the predominant gray and WM degeneration in AD, no systematic curvature increase was observed in AD.ConclusionWhole-brain-averaged cortical extrinsic curvature appears to be a specific and quantitative marker for a WMV–cortex disproportionality and allows us to assess “pure” WMA without being confounded by intracranial volume. WMA seems to be a characteristic symptom in early MS and can already occur in patients with CIS and should thus be considered in future MS research and clinical studies

    Excitotoxic neuronal cell death during an oligodendrocyte-directed CD8+ T cell attack in the CNS gray matter

    Full text link
    Background: Neural-antigen reactive cytotoxic CD8+ T cells contribute to neuronal dysfunction and degeneration in a variety of inflammatory CNS disorders. Facing excess numbers of target cells, CNS-invading CD8+ T cells cause neuronal cell death either via confined release of cytotoxic effector molecules towards neurons, or via spillover of cytotoxic effector molecules from 'leaky’ immunological synapses and non-confined release by CD8+ T cells themselves during serial and simultaneous killing of oligodendrocytes or astrocytes. Methods: Wild-type and T cell receptor transgenic CD8+ T cells were stimulated in vitro, their activation status was assessed by flow cytometry, and supernatant glutamate levels were determined using an enzymatic assay. Expression regulation of molecules involved in vesicular glutamate release was examined by quantitative real-time PCR, and mechanisms of non-vesicular glutamate release were studied by pharmacological blocking experiments. The impact of CD8+ T cell-mediated glutamate liberation on neuronal viability was studied in acute brain slice preparations. Results: Following T cell receptor stimulation, CD8+ T cells acquire the molecular repertoire for vesicular glutamate release: (i) they upregulate expression of glutaminase required to generate glutamate via deamination of glutamine and (ii) they upregulate expression of vesicular proton-ATPase and vesicular glutamate transporters required for filling of vesicles with glutamate. Subsequently, CD8+ T cells release glutamate in a strictly stimulus-dependent manner. Upon repetitive T cell receptor stimulation, CD25high CD8+ T effector cells exhibit higher estimated single cell glutamate release rates than CD25low CD8+ T memory cells. Moreover, glutamate liberation by oligodendrocyte-reactive CD25high CD8+ T effector cells is capable of eliciting collateral excitotoxic cell death of neurons (despite glutamate re-uptake by glia cells and neurons) in intact CNS gray matter. Conclusion: Glutamate release may represent a crucial effector pathway of neural-antigen reactive CD8+ T cells, contributing to excitotoxicity in CNS inflammation.<br
    corecore