5 research outputs found

    Influence of Aeration Method on Gaseous Emissions and the Losses of the Carbon and Nitrogen during Cow Manure Composting

    No full text
    The objective of this research was to explore the effects of different aeration methods on NH3 and greenhouse gas (GHG) emissions and the losses of carbon and nitrogen from composting of cow manure and corn stalks in the laboratory-scale reactors. Here, we designed three treatments, including continuous aerated treatment C1 (aeration rates 0.21 L·kg−1 dry matter (DM)·min−1) and intermittent aerated treatments I1 (aeration rates 0.42 L·kg−1 DM·min−1; aerate 10 min, stop 10 min) and I2 (aeration rates 0.84 L·kg−1 DM·min−1; aerate 5 min, stop 15 min). The results showed that the physicochemical parameters (temperature, pH values, and germination index) of composting products met the requirements of maturity and sanitation. Compared with continuous aerated treatment C1, the cumulative NH3 emissions of I1 and I2 treatments decreased by 24.37% and 19.27%, while the cumulative CO2 emissions decreased by 13.01% and 20.72%. On the contrary, the cumulative N2O emissions of I1 and I2 treatments increased by 22.22% and 43.14%. CO2 emission was the principal pathway for the TOC losses, which comprised over 65% of TOC losses. C1 treatment had the highest TOC losses due to its highest cumulative CO2 emissions. The TN losses of I1 and I2 treatments reduced 9.07% and 6.1% compared to C1 treatment, so the intermittent aerated modes could reduce the TN loss. Due to the potential for mitigation of gaseous emissions, I1 treatment was recommended to be used in aerobic composting of cow manure

    1-(3-Carboxylatophenyl)-4,4′-bipyridin-1-ium dihydrate

    Get PDF
    In the crystal structure of the title compound, C17H12N2O2·2H2O, the carboxylate group is linked via O—H...O hydrogen bonds to two water molecules. The crystal packing is best described as parallel layers (viewed along the a axis) of viologen and water molecules associated via O—H...O hydrogen bonds and π–π interactions, with a centroid–centroid separation of 3.8276 (9) Å

    Vaccination with Consensus H7 Elicits Broadly Reactive and Protective Antibodies against Eurasian and North American Lineage H7 Viruses

    No full text
    H7 subtype avian influenza viruses have caused outbreaks in poultry, and even human infection, for decades in both Eurasia and North America. Although effective vaccines offer the best protection against avian influenza viruses, antigenically distinct Eurasian and North American lineage subtype H7 viruses require the development of cross-protective vaccine candidates. In this study, a methodology called computationally optimized broadly reactive antigen (COBRA) was used to develop four consensus H7 antigens (CH7-22, CH7-24, CH7-26, and CH7-28). In vitro experiments confirmed the binding of monoclonal antibodies to the head and stem domains of cell surface-expressed consensus HAs, indicating display of their antigenicity. Immunization with DNA vaccines encoding the four antigens was evaluated in a mouse model. Broadly reactive antibodies against H7 viruses from Eurasian and North American lineages were elicited and detected by binding, inhibition, and neutralizing analyses. Further infection with Eurasian H7N9 and North American H7N3 virus strains confirmed that CH7-22 and CH7-24 conferred the most effective protection against hetero-lethal challenge. Our data showed that the consensus H7 vaccines elicit a broadly reactive, protective response against Eurasian and North American lineage H7 viruses, which are suitable for development against other zoonotic influenza viruses