19,264 research outputs found

### Matter loops corrected modified gravity in Palatini formulation

Recently, corrections to the standard Einstein-Hilbert action are proposed to
explain the current cosmic acceleration in stead of introducing dark energy. In
the Palatini formulation of those modified gravity models, there is an
important observation due to Arkani-Hamed: matter loops will give rise to a
correction to the modified gravity action proportional to the Ricci scalar of
the metric. In the presence of such term, we show that the current forms of
modified gravity models in Palatini formulation, specifically, the 1/R gravity
and $\ln R$ gravity, will have phantoms. Then we study the possible
instabilities due to the presence of phantom fields. We show that the strong
instability in the metric formulation of 1/R gravity indicated by Dolgov and
Kawasaki will not appear and the decay timescales for the phantom fields may be
long enough for the theories to make sense as effective field theory . On the
other hand, if we change the sign of the modification terms to eliminate the
phantoms, some other inconsistencies will arise for the various versions of the
modified gravity models. Finally, we comment on the universal property of the
Palatini formulation of the matter loops corrected modified gravity models and
its implications.Comment: 11 pages, 1 figures, References adde

### Stabilization of networked control systems via dynamic output-feedback controllers

This paper investigates the problem of stabilization of networked control systems via dynamic output-feedback controllers. The physical plant and the dynamic controller are in continuous time, and a communication channel exists between the output of the physical plant and the input of the dynamic controller. Three important communication features are considered: measurement quantization, signal transmission delay, and data packet dropout, which appear typically in a networked environment. Attention is focused on the design of dynamic output-feedback controllers which ensure asymptotic stability of the closed-loop systems. Linear matrix inequality (LMI)-based conditions are formulated for the existence of admissible controllers. If these conditions are satisfied, a desired controller can be readily constructed. A satellite system is used to illustrate the applicability and effectiveness of the proposed controller design method.published_or_final_versio

### Aberrant posterior cingulate connectivity classify first-episode schizophrenia from controls: A machine learning study

Background Posterior cingulate cortex (PCC) is a key aspect of the default mode network (DMN). Aberrant PCC functional connectivity (FC) is implicated in schizophrenia, but the potential for PCC related changes as biological classifier of schizophrenia has not yet been evaluated. Methods We conducted a data-driven approach using resting-state functional MRI data to explore differences in PCC-based region- and voxel-wise FC patterns, to distinguish between patients with first-episode schizophrenia (FES) and demographically matched healthy controls (HC). Discriminative PCC FCs were selected via false discovery rate estimation. A gradient boosting classifier was trained and validated based on 100 FES vs. 93 HC. Subsequently, classification models were tested in an independent dataset of 87 FES patients and 80 HC using resting-state data acquired on a different MRI scanner. Results Patients with FES had reduced connectivity between PCC and frontal areas, left parahippocampal regions, left anterior cingulate cortex, and right inferior parietal lobule, but hyperconnectivity with left lateral temporal regions. Predictive voxel-wise clusters were similar to region-wise selected brain areas functionally connected with PCC in relation to discriminating FES from HC subject categories. Region-wise analysis of FCs yielded a relatively high predictive level for schizophrenia, with an average accuracy of 72.28% in the independent samples, while selected voxel-wise connectivity yielded an accuracy of 68.72%. Conclusion FES exhibited a pattern of both increased and decreased PCC-based connectivity, but was related to predominant hypoconnectivity between PCC and brain areas associated with DMN, that may be a useful differential feature revealing underpinnings of neuropathophysiology for schizophrenia

### Comprehensive Characterization of the Transmitted/Founder env Genes From a Single MSM Cohort in China

Background: The men having sex with men (MSM) population has become one of the major risk groups for HIV-1 infection in China. However, the epidemiological patterns, function of the env genes, and autologous and heterologous neutralization activity in the same MSM population have not been systematically characterized. Methods: The env gene sequences were obtained by the single genome amplification. The time to the most recent common ancestor was estimated for each genotype using the Bayesian Markov Chain Monte Carlo approach. Coreceptor usage was determined in NP-2 cells. Neutralization was analyzed using Env pseudoviruses in TZM-bl cells. Results: We have obtained 547 full-length env gene sequences by single genome amplification from 30 acute/early HIV-1âinfected individuals in the Beijing MSM cohort. Three genotypes (subtype B, CRF01_AE, and CRF07_BC) were identified and 20% of the individuals were infected with multiple transmitted/founder (T/F) viruses. The tight clusters of the MSM sequences regardless of geographic origins indicated nearly exclusive transmission within the MSM population and limited number of introductions. The time to the most recent common ancestor for each genotype was 10â15 years after each was first introduced in China. Disparate preferences for coreceptor usages among 3 genotypes might lead to the changes in percentage of different genotypes in the MSM population over time. The genotype-matched and genotype-mismatched neutralization activity varied among the 3 genotypes. Conclusions: The identification of unique characteristics for transmission, coreceptor usage, neutralization profile, and epidemic patterns of HIV-1 is critical for the better understanding of transmission mechanisms, development of preventive strategies, and evaluation of vaccine efficacy in the MSM population in China

### Cosmological perturbations in Palatini modified gravity

Two approaches to the study of cosmological density perturbations in modified
theories of Palatini gravity have recently been discussed. These utilise,
respectively, a generalisation of Birkhoff's theorem and a direct linearization
of the gravitational field equations. In this paper these approaches are
compared and contrasted. The general form of the gravitational lagrangian for
which the two frameworks yield identical results in the long-wavelength limit
is derived. This class of models includes the case where the lagrangian is a
power-law of the Ricci curvature scalar. The evolution of density perturbations
in theories of the type $f(R)=R-c /R^ b$ is investigated numerically. It is
found that the results obtained by the two methods are in good agreement on
sufficiently large scales when the values of the parameters (b,c) are
consistent with current observational constraints. However, this agreement
becomes progressively poorer for models that differ significantly from the
standard concordance model and as smaller scales are considered

### The nearly Newtonian regime in Non-Linear Theories of Gravity

The present paper reconsiders the Newtonian limit of models of modified
gravity including higher order terms in the scalar curvature in the
gravitational action. This was studied using the Palatini variational principle
in [Meng X. and Wang P.: Gen. Rel. Grav. {\bf 36}, 1947 (2004)] and
[Dom\'inguez A. E. and Barraco D. E.: Phys. Rev. D {\bf 70}, 043505 (2004)]
with contradicting results. Here a different approach is used, and problems in
the previous attempts are pointed out. It is shown that models with negative
powers of the scalar curvature, like the ones used to explain the present
accelerated expansion, as well as their generalization which include positive
powers, can give the correct Newtonian limit, as long as the coefficients of
these powers are reasonably small. Some consequences of the performed analysis
seem to raise doubts for the way the Newtonian limit was derived in the purely
metric approach of fourth order gravity [Dick R.: Gen. Rel. Grav. {\bf 36}, 217
(2004)]. Finally, we comment on a recent paper [Olmo G. J.: Phys. Rev. D {\bf
72}, 083505 (2005)] in which the problem of the Newtonian limit of both the
purely metric and the Palatini formalism is discussed, using the equivalent
Brans--Dicke theory, and with which our results partly disagree.Comment: typos corrected, replaced to match published versio

### Constraining f(R) gravity in the Palatini formalism

Although several models of $f(R)$ theories of gravity within the Palatini
approach have been studied already, the interest was concentrated on those that
have an effect on the late-time evolution of the universe, by the inclusion for
example of terms inversely proportional to the scalar curvature in the
gravitational action. However, additional positive powers of the curvature also
provide interesting early-time phenomenology, like inflation, and the presence
of such terms in the action is equally, if not more, probable. In the present
paper models with both additional positive and negative powers of the scalar
curvature are studied. Their effect on the evolution of the universe is
investigated for all cosmological eras, and various constraints are put on the
extra terms in the actions. Additionally, we examine the extent to which the
new terms in positive powers affect the late-time evolution of the universe and
the related observables, which also determines our ability to probe their
presence in the gravitational action.Comment: reference update and minor changes to match published versio

### Acceleration of the universe in the Einstein frame of a metric-affine f(R) gravity

We show that inflation and current cosmic acceleration can be generated by a
metric-affine f(R) gravity formulated in the Einstein conformal frame, if the
gravitational Lagrangian L(R) contains both positive and negative powers of the
curvature scalar R. In this frame, we give the equations for the expansion of
the homogeneous and isotropic matter-dominated universe in the case
L(R)=R+{R^3}/{\beta^2}-{\alpha^2}/{3R}, where \alpha and \beta are constants.
We also show that gravitational effects of matter in such a universe at very
late stages of its expansion are weakened by a factor that tends to 3/4, and
the energy density of matter \epsilon scales the same way as in the \Lambda-CDM
model only when \kappa*\epsilon<<\alpha.Comment: 12 pages; published versio

### Nuclear charge-exchange excitations in localized covariant density functional theory

The recent progress in the studies of nuclear charge-exchange excitations
with localized covariant density functional theory is briefly presented, by
taking the fine structure of spin-dipole excitations in 16O as an example. It
is shown that the constraints introduced by the Fock terms of the relativistic
Hartree-Fock scheme into the particle-hole residual interactions are
straightforward and robust.Comment: 4 pages, 1 figure, Proceedings of INPC2013, Florence, Italy, 2-7 June
201

- âŠ