62 research outputs found

    A Game-Theoretic Approach for Elastic Distributed Data Stream Processing

    Get PDF
    Distributed data stream processing applications are structured as graphs of interconnected modules able to ingest high-speed data and to transform them in order to generate results of interest. Elasticity is one of the most appealing features of stream processing applications. It makes it possible to scale up/down the allocated computing resources on demand in response to fluctuations of the workload. On clouds, this represents a necessary feature to keep the operating cost at affordable levels while accommodating user-defined QoS requirements. In this article, we study this problem from a game-theoretic perspective. The control logic driving elasticity is distributed among local control agents capable of choosing the right amount of resources to use by each module. In a first step, we model the problem as a noncooperative game in which agents pursue their self-interest. We identify the Nash equilibria and we design a distributed procedure to reach the best equilibrium in the Pareto sense. As a second step, we extend the noncooperative formulation with a decentralized incentive-based mechanism in order to promote cooperation by moving the agreement point closer to the system optimum. Simulations confirm the results of our theoretical analysis and the quality of our strategies

    Un modello di programmazione parallela per applicazioni adattive e Context-Aware

    Get PDF
    La tesi affronta le problematiche di realizzazione di applicazioni parallele ad alte prestazioni adattive al contesto. Nella tesi viene analizzato un approccio generico alla Context Awareness e viene descritta in particolar modo una possibile estensione del modello di programmazione parallela ASSIST, che prende nome di ASSISTANT (ASSIST with Adaptivity and coNText awareness). Del modello ASSISTANT viene data una valutazione qualitativa della sua utilità mediante l'emulazione dei meccanismi di adattività descritti nella tesi con la versione di ASSIST attuale

    Developing Real-Time Emergency Management Applications: Methodology for a Novel Programming Model Approach

    Get PDF
    The last years have been characterized by the arising of highly distributed computing platforms composed of a heterogeneity of computing and communication resources including centralized high-performance computing architectures (e.g. clusters or large shared-memory machines), as well as multi-/many-core components also integrated into mobile nodes and network facilities. The emerging of computational paradigms such as Grid and Cloud Computing, provides potential solutions to integrate such platforms with data systems, natural phenomena simulations, knowledge discovery and decision support systems responding to a dynamic demand of remote computing and communication resources and services. In this context time-critical applications, notably emergency management systems, are composed of complex sets of application components specialized for executing specific computations, which are able to cooperate in such a way as to perform a global goal in a distributed manner. Since the last years the scientific community has been involved in facing with the programming issues of distributed systems, aimed at the definition of applications featuring an increasing complexity in the number of distributed components, in the spatial distribution and cooperation between interested parties and in their degree of heterogeneity. Over the last decade the research trend in distributed computing has been focused on a crucial objective. The wide-ranging composition of distributed platforms in terms of different classes of computing nodes and network technologies, the strong diffusion of applications that require real-time elaborations and online compute-intensive processing as in the case of emergency management systems, lead to a pronounced tendency of systems towards properties like self-managing, self-organization, self-controlling and strictly speaking adaptivity. Adaptivity implies the development, deployment, execution and management of applications that, in general, are dynamic in nature. Dynamicity concerns the number and the specific identification of cooperating components, the deployment and composition of the most suitable versions of software components on processing and networking resources and services, i.e., both the quantity and the quality of the application components to achieve the needed Quality of Service (QoS). In time-critical applications the QoS specification can dynamically vary during the execution, according to the user intentions and the Developing Real-Time Emergency Management Applications: Methodology for a Novel Programming Model Approach Gabriele Mencagli and Marco Vanneschi Department of Computer Science, University of Pisa, L. Bruno Pontecorvo, Pisa Italy 2 2 Will-be-set-by-IN-TECH information produced by sensors and services, as well as according to the monitored state and performance of networks and nodes. The general reference point for this kind of systems is the Grid paradigm which, by definition, aims to enable the access, selection and aggregation of a variety of distributed and heterogeneous resources and services. However, though notable advancements have been achieved in recent years, current Grid technology is not yet able to supply the needed software tools with the features of high adaptivity, ubiquity, proactivity, self-organization, scalability and performance, interoperability, as well as fault tolerance and security, of the emerging applications. For this reason in this chapter we will study a methodology for designing high-performance computations able to exploit the heterogeneity and dynamicity of distributed environments by expressing adaptivity and QoS-awareness directly at the application level. An effective approach needs to address issues like QoS predictability of different application configurations as well as the predictability of reconfiguration costs. Moreover adaptation strategies need to be developed assuring properties like the stability degree of a reconfiguration decision and the execution optimality (i.e. select reconfigurations accounting proper trade-offs among different QoS objectives). In this chapter we will present the basic points of a novel approach that lays the foundations for future programming model environments for time-critical applications such as emergency management systems. The organization of this chapter is the following. In Section 2 we will compare the existing research works for developing adaptive systems in critical environments, highlighting their drawbacks and inefficiencies. In Section 3, in order to clarify the application scenarios that we are considering, we will present an emergency management system in which the run-time selection of proper application configuration parameters is of great importance for meeting the desired QoS constraints. In Section 4we will describe the basic points of our approach in terms of how compute-intensive operations can be programmed, how they can be dynamically modified and how adaptation strategies can be expressed. In Section 5 our approach will be contextualize to the definition of an adaptive parallel module, which is a building block for composing complex and distributed adaptive computations. Finally in Section 6 we will describe a set of experimental results that show the viability of our approach and in Section 7 we will give the concluding remarks of this chapter

    Keep Calm and React with Foresight: Strategies for Low-latency and Energy-efficient Elastic Data Stream Processing

    Get PDF
    This paper addresses the problem of designing scaling strategies for elastic data stream processing. Elasticity allows applications to rapidly change their configuration on-the-fly (e.g., the amount of used resources) in response to dynamic workload fluctuations. In this work we face this problem by adopting the Model Predictive Control technique, a control-theoretic method aimed at finding the optimal application configuration along a limited prediction horizon in the future by solving an online optimization problem. Our control strategies are designed to address latency constraints, using Queueing Theory models, and energy consumption by changing the number of used cores and the CPU frequency through the Dynamic Voltage and Frequency Scaling (DVFS) support available in the modern multicore CPUs. The proactive capabilities, in addition to the latency- and energy-awareness, represent the novel features of our approach. To validate our methodology, we develop a thorough set of experiments on a high-frequency trading application. The results demonstrate the high-degree of flexibility and configurability of our approach, and show the effectiveness of our elastic scaling strategies compared with existing state-of-the-art techniques used in similar scenarios

    Proactive elasticity and energy awareness in data stream processing

    Get PDF
    Data stream processing applications have a long running nature (24hr/7d) with workload conditions that may exhibit wide variations at run-time. Elasticity is the term coined to describe the capability of applications to change dynamically their resource usage in response to workload fluctuations. This paper focuses on strategies for elastic data stream processing targeting multicore systems. The key idea is to exploit Model Predictive Control, a control-theoretic method that takes into account the system behavior over a future time horizon in order to decide the best reconfiguration to execute. We design a set of energy-aware proactive strategies, optimized for throughput and latency QoS requirements, which regulate the number of used cores and the CPU frequency through the Dynamic Voltage and Frequency Scaling (DVFS) support offered by modern multicore CPUs. We evaluate our strategies in a high-frequency trading application fed by synthetic and real-world workload traces. We introduce specific properties to effectively compare different elastic approaches, and the results show that our strategies are able to achieve the best outcome

    The home-forwarding mechanism to reduce the cache coherence overhead in next-generation CMPs

    Get PDF
    On the road to computer systems able to support the requirements of exascale applications, Chip Multi-Processors (CMPs) are equipped with an ever increasing number of cores interconnected through fast on-chip networks. To exploit such new architectures, the parallel software must be able to scale almost linearly with the number of cores available. To this end, the overhead introduced by the run-time system of parallel programming frameworks and by the architecture itself must be small enough in order to enable high scalability also for very fine-grained parallel programs. An approach to reduce this overhead is to use non-conventional architectural mechanisms revealing useful when certain concurrency patterns in the running application are statically or dynamically recognized. Following this idea, this paper proposes a run-time support able to reduce the effective latency of inter-thread cooperation primitives by lowering the contention on individual caches. To achieve this goal, the new home-forwarding hardware mechanism is proposed and used by our runtime in order to reduce the amount of cache-to-cache interactions generated by the cache coherence protocol. Our ideas have been emulated on the Tilera TILEPro64 CMP, showing a significant speedup improvement in some first benchmarks

    A Control-Theoretic Methodology for Adaptive Structured Parallel Computations

    Get PDF
    Adaptivity for distributed parallel applications is an essential feature whose impor- tance has been assessed in many research fields (e.g. scientific computations, large- scale real-time simulation systems and emergency management applications). Especially for high-performance computing, this feature is of special interest in order to properly and promptly respond to time-varying QoS requirements, to react to uncontrollable environ- mental effects influencing the underlying execution platform and to efficiently deal with highly irregular parallel problems. In this scenario the Structured Parallel Programming paradigm is a cornerstone for expressing adaptive parallel programs: the high-degree of composability of parallelization schemes, their QoS predictability formally expressed by performance models, are basic tools in order to introduce dynamic reconfiguration processes of adaptive applications. These reconfigurations are not only limited to imple- mentation aspects (e.g. parallelism degree modifications), but also parallel versions with different structures can be expressed for the same computation, featuring different levels of performance, memory utilization, energy consumption, and exploitation of the memory hierarchies. Over the last decade several programming models and research frameworks have been developed aimed at the definition of tools and strategies for expressing adaptive parallel applications. Notwithstanding this notable research effort, properties like the optimal- ity of the application execution and the stability of control decisions are not sufficiently studied in the existing work. For this reason this thesis exploits a pioneer research in the context of providing formal theoretical tools founded on Control Theory and Game Theory techniques. Based on these approaches, we introduce a formal model for control- ling distributed parallel applications represented by computational graphs of structured parallelism schemes (also called skeleton-based parallelism). Starting out from the performance predictability of structured parallelism schemes, in this thesis we provide a formalization of the concept of adaptive parallel module per- forming structured parallel computations. The module behavior is described in terms of a Hybrid System abstraction and reconfigurations are driven by a Predictive Control ap- proach. Experimental results show the effectiveness of this work, in terms of execution cost reduction as well as the stability degree of a system reconfiguration: i.e. how long a reconfiguration choice is useful for targeting the required QoS levels. This thesis also faces with the issue of controlling large-scale distributed applications composed of several interacting adaptive components. After a panoramic view of the existing control-theoretic approaches (e.g. based on decentralized, distributed or hierar- chical structures of controllers), we introduce a methodology for the distributed predictive control. For controlling computational graphs, the overall control problem consists in a set of coupled control sub-problems for each application module. The decomposition is- sue has a twofold nature: first of all we need to model the coupling relationships between control sub-problems, furthermore we need to introduce proper notions of negotiation and convergence in the control decisions collectively taken by the parallel modules of the application graph. This thesis provides a formalization through basic concepts of Non-cooperative Games and Cooperative Optimization. In the notable context of the dis- tributed control of performance and resource utilization, we exploit a formal description of the control problem providing results for equilibrium point existence and the compari- son of the control optimality with different adaptation strategies and interaction protocols. Discussions and a first validation of the proposed techniques are exploited through exper- iments performed in a simulation environment

    Elastic-PPQ: A two-level autonomic system for spatial preference query processing over dynamic data streams

    Get PDF
    Paradigms like Internet of Things and the most recent Internet of Everything are shifting the attention towards systems able to process unbounded sequences of items in the form of data streams. In the real world, data streams may be highly variable, exhibiting burstiness in the arrival rate and non-stationarities such as trends and cyclic behaviors. Furthermore, input items may be not ordered according to timestamps. This raises the complexity of stream processing systems, which must support elastic resource management and autonomic QoS control through sophisticated strategies and run-time mechanisms. In this paper we present Elastic-PPQ, a system for processing spatial preference queries over dynamic data streams. The key aspect of the system design is the existence of two adaptation levels handling workload variations at different time-scales. To address fast time-scale variations we design a fine regulatory mechanism of load balancing supported by a control-theoretic approach. The logic of the second adaptation level, targeting slower time-scale variations, is incorporated in a Fuzzy Logic Controller that makes scale in/out decisions of the system parallelism degree. The approach has been successfully evaluated under synthetic and real-world datasets

    Parallel Continuous Preference Queries over Out-of-Order and Bursty Data Streams

    Get PDF
    Techniques to handle traffic bursts and out-of-order arrivals are of paramount importance to provide real-time sensor data analytics in domains like traffic surveillance, transportation management, healthcare and security applications. In these systems the amount of raw data coming from sensors must be analyzed by continuous queries that extract value-added information used to make informed decisions in real-time. To perform this task with timing constraints, parallelism must be exploited in the query execution in order to enable the real-time processing on parallel architectures. In this paper we focus on continuous preference queries, a representative class of continuous queries for decision making, and we propose a parallel query model targeting the efficient processing over out-of-order and bursty data streams. We study how to integrate punctuation mechanisms in order to enable out-of-order processing. Then, we present advanced scheduling strategies targeting scenarios with different burstiness levels, parameterized using the index of dispersion quantity. Extensive experiments have been performed using synthetic datasets and real-world data streams obtained from an existing real-time locating system. The experimental evaluation demonstrates the efficiency of our parallel solution and its effectiveness in handling the out-of-orderness degrees and burstiness levels of real-world applications
    • …