109 research outputs found

    Multiplexed dispersive readout of superconducting phase qubits

    Full text link
    We introduce a frequency-multiplexed readout scheme for superconducting phase qubits. Using a quantum circuit with four phase qubits, we couple each qubit to a separate lumped-element superconducting readout resonator, with the readout resonators connected in parallel to a single measurement line. The readout resonators and control electronics are designed so that all four qubits can be read out simultaneously using frequency multiplexing on the one measurement line. This technology provides a highly efficient and compact means for reading out multiple qubits, a significant advantage for scaling up to larger numbers of qubits.Comment: 4 pages, 4 figure

    Planar Superconducting Resonators with Internal Quality Factors above One Million

    Full text link
    We describe the fabrication and measurement of microwave coplanar waveguide resonators with internal quality factors above 10 million at high microwave powers and over 1 million at low powers, with the best low power results approaching 2 million, corresponding to ~1 photon in the resonator. These quality factors are achieved by controllably producing very smooth and clean interfaces between the resonators' aluminum metallization and the underlying single crystal sapphire substrate. Additionally, we describe a method for analyzing the resonator microwave response, with which we can directly determine the internal quality factor and frequency of a resonator embedded in an imperfect measurement circuit.Comment: 4 pages, 3 figures, 1 tabl

    Excitation of superconducting qubits from hot non-equilibrium quasiparticles

    Full text link
    Superconducting qubits probe environmental defects such as non-equilibrium quasiparticles, an important source of decoherence. We show that "hot" non-equilibrium quasiparticles, with energies above the superconducting gap, affect qubits differently from quasiparticles at the gap, implying qubits can probe the dynamic quasiparticle energy distribution. For hot quasiparticles, we predict a non-neligable increase in the qubit excited state probability P_e. By injecting hot quasiparticles into a qubit, we experimentally measure an increase of P_e in semi-quantitative agreement with the model and rule out the typically assumed thermal distribution.Comment: Main paper: 5 pages, 5 figures. Supplement: 1 page, 1 figure, 1 table. Updated to user-prepared accepted version. Key changes: Supplement added, Introduction rewritten, Figs.2,3,5 revised, Fig.4 adde
    • …