75 research outputs found

    Notch system in the linkage of innate and adaptive immunity

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142014/1/jlb0059.pd

    Spred2-deficiency enhances the proliferation of lung epithelial cells and alleviates pulmonary fibrosis induced by bleomycin

    Get PDF
    The mitogen-activated protein kinase (MAPK) pathways are involved in many cellular processes, including the development of fibrosis. Here, we examined the role of Sprouty-related EVH-1-domain-containing protein (Spred) 2, a negative regulator of the MAPK-ERK pathway, in the development of bleomycin (BLM)-induced pulmonary fibrosis (PF). Compared to WT mice, Spred2−/− mice developed milder PF with increased proliferation of bronchial epithelial cells. Spred2−/− lung epithelial cells or MLE-12 cells treated with spred2 siRNA proliferated faster than control cells in vitro. Spred2−/− and WT macrophages produced similar levels of TNFα and MCP-1 in response to BLM or lipopolysaccharide and myeloid cell-specific deletion of Spred2 in mice had no effect. Spred2−/− fibroblasts proliferated faster and produced similar levels of MCP-1 compared to WT fibroblasts. Spred2 mRNA was almost exclusively detected in bronchial epithelial cells of naïve WT mice and it accumulated in approximately 50% of cells with a characteristic of Clara cells, 14 days after BLM treatment. These results suggest that Spred2 is involved in the regulation of tissue repair after BLM-induced lung injury and increased proliferation of lung bronchial cells in Spred2−/− mice may contribute to faster tissue repair. Thus, Spred2 may present a new therapeutic target for the treatment of PF

    Spred-2 deficiency exacerbates acetaminophen-induced hepatotoxicity in mice

    Get PDF
    MAPKs are involved in acetaminophen (APAP)-hepatotoxicity, but the regulatory mechanism remains unknown. Here, we explored the role of Spred-2 that negatively regulates Ras/ERK pathway in APAP-hepatotoxicity. Spred-2 knockout (KO) mice demonstrated exacerbated liver injury, an event that was associated with increased numbers of CD4(+) T, CD8(+) T and NK cells in the liver compared to the control. Levels of CXCL9/CXCL10 that attract and activate these cells were increased in Spred-2 KO-liver. Kupffer cells isolated from Spred-2 KO mice after APAP challenge expressed higher levels of CXCL9/CXCL10 than those from the control. Upon stimulation with APAP or IFN gamma, naive Kupffer cells from Spred-2 KO mice expressed higher levels of CXCL9/CXCL10. NK cell-depletion attenuated APAP-hepatotoxicity with lowered hepatic IFN gamma and decreased numbers of not only NK cells but also CD4(+) T and CD8(+) T cells in the liver. These results suggest that Spred-2 negatively regulates APAP-hepatotoxicity under the control of Kupffer cells and NK cells

    Mcm2 hypomorph leads to acute leukemia or hematopoietic stem cell failure, dependent on genetic context

    Get PDF
    Minichromosome maintenance proteins (Mcm2-7) form a hexameric complex that unwinds DNA ahead of a replicative fork. The deficiency of Mcm proteins leads to replicative stress and consequent genomic instability. Mice with a germline insertion of a Cre cassette into the 3'UTR of the Mcm2 gene (designated Mcm2Cre ) have decreased Mcm2 expression and invariably develop precursor T-cell lymphoblastic leukemia/lymphoma (pre-T LBL), due to 100-1000 kb deletions involving important tumor suppressor genes. To determine whether mice that were protected from pre-T LBL would develop non-T-cell malignancies, we used two approaches. Mice engrafted with Mcm2Cre/Cre Lin- Sca-1+ Kit+ hematopoietic stem/progenitor cells did not develop hematologic malignancy; however, these mice died of hematopoietic stem cell failure by 6 months of age. Placing the Mcm2Cre allele onto an athymic nu/nu background completely prevented pre-T LBL and extended survival of these mice three-fold (median 296.5 vs. 80.5 days). Ultimately, most Mcm2Cre/Cre ;nu/nu mice developed B-cell precursor acute lymphoblastic leukemia (BCP-ALL). We identified recurrent deletions of 100-1000 kb that involved genes known or suspected to be involved in BCP-ALL, including Pax5, Nf1, Ikzf3, and Bcor. Moreover, whole-exome sequencing identified recurrent mutations of genes known to be involved in BCP-ALL progression, such as Jak1/Jak3, Ptpn11, and Kras. These findings demonstrate that an Mcm2Cre/Cre hypomorph can induce hematopoietic dysfunction via hematopoietic stem cell failure as well as a "deletor" phenotype affecting known or suspected tumor suppressor genes

    The Critical Role of Notch Ligand Delta-like 1 in the Pathogenesis of Influenza A Virus (H1N1) Infection

    Get PDF
    Influenza A viral infections have been identified as the etiologic agents for historic pandemics, and contribute to the annual mortality associated with acute viral pneumonia. While both innate and acquired immunity are important in combating influenza virus infection, the mechanism connecting these arms of the immune system remains unknown. Recent data have indicated that the Notch system is an important bridge between antigen-presenting cells (APCs) and T cell communication circuits and plays a central role in driving the immune system to overcome disease. In the present study, we examine the role of Notch signaling during influenza H1N1 virus infection, focusing on APCs. We demonstrate here that macrophages, but not dendritic cells (DCs), increased Notch ligand Delta-like 1 (Dll1) expression following influenza virus challenge. Dll1 expression on macrophages was dependent on retinoic acid-inducible gene-I (RIG-I) induced type-I IFN pathway, and not on the TLR3-TRIF pathway. We also found that IFNα-Receptor knockout mice failed to induce Dll1 expression on lung macrophages and had enhanced mortality during influenza virus infection. Our results further showed that specific neutralization of Dll1 during influenza virus challenge induced higher mortality, impaired viral clearance, and decreased levels of IFN-γ. In addition, we blocked Notch signaling by using γ-secretase inhibitor (GSI), a Notch signaling inhibitor. Intranasal administration of GSI during influenza infection also led to higher mortality, and higher virus load with excessive inflammation and an impaired production of IFN-γ in lungs. Moreover, Dll1 expression on macrophages specifically regulates IFN-γ levels from CD4+and CD8+T cells, which are important for anti-viral immunity. Together, the results of this study show that Dll1 positively influences the development of anti-viral immunity, and may provide mechanistic approaches for modifying and controlling the immune response against influenza H1N1 virus infection

    Monocyte chemoattractant protein-1/CCL2 produced by stromal cells promotes lung metastasis of 4T1 murine breast cancer cells

    Get PDF
    MCP-1/CCL2 plays an important role in the initiation and progression of cancer. Since tumor cells produce MCP-1, they are considered to be the main source of this chemokine. Here, we examined whether MCP-1 produced by non-tumor cells affects the growth and lung metastasis of 4T1 breast cancer cells by transplanting them into the mammary pad of WT or MCP-1−/− mice. Primary tumors at the injected site grew similarly in both mice; however, lung metastases were markedly reduced in MCP-1−/− mice, with significantly longer mouse survival. High levels of MCP-1 mRNA were detected in tumors growing in WT, but not MCP-1−/− mice. Serum MCP-1 levels were increased in tumor-bearing WT, but not MCP-1−/− mice. Transplantation of MCP-1−/− bone marrow cells into WT mice did not alter the incidence of lung metastasis, whereas transplantation of WT bone marrow cells into MCP-1−/− mice increased lung metastasis. The primary tumors of MCP-1−/− mice consistently developed necrosis earlier than those of WT mice and showed decreased infiltration by macrophages and reduced angiogenesis. Interestingly, 4T1 cells that metastasized to the lung constitutively expressed elevated levels of MCP-1, and intravenous injection of 4T1 cells producing a high level of MCP-1 resulted in increased tumor foci in the lung of WT and MCP-1−/− mice. Thus, stromal cell-derived MCP-1 in the primary tumors promotes lung metastasis of 4T1 cells, but tumor cell-derived MCP-1 can also contribute once tumor cells enter the circulation. A greater understanding of the source and role of this chemokine may lead to novel strategies for cancer treatment