482 research outputs found

    Spontaneous Glioblastoma Spheroid Infiltration of Early-Stage Cerebral Organoids Models Brain Tumor Invasion.

    Get PDF
    Organoid methodology provides a platform for the ex vivo investigation of the cellular and molecular mechanisms underlying brain development and disease. The high-grade brain tumor glioblastoma multiforme (GBM) is considered a cancer of unmet clinical need, in part due to GBM cell infiltration into healthy brain parenchyma, making complete surgical resection improbable. Modeling the process of GBM invasion in real time is challenging as it requires both tumor and neural tissue compartments. Here, we demonstrate that human GBM spheroids possess the ability to spontaneously infiltrate early-stage cerebral organoids (eCOs). The resulting formation of hybrid organoids demonstrated an invasive tumor phenotype that was distinct from noncancerous adult neural progenitor (NP) spheroid incorporation into eCOs. These findings provide a basis for the modeling and quantification of the GBM infiltration process using a stem-cell-based organoid approach, and may be used for the identification of anti-GBM invasion strategies

    Three principles for the progress of immersive technologies in healthcare training and education.

    Get PDF
    This is the final version. Available from BMJ Publishing via the DOI in this record.

    Assessing national patterns and outcomes of pituitary surgery: is hospital administrative data good enough?

    Get PDF
    Purpose Patterns of surgical care, outcomes, and quality of care can be assessed using hospital administrative databases but this requires accurate and complete data. The aim of this study was to explore whether the quality of hospital administrative data was sufficient to assess pituitary surgery practice in England. Methods The study analysed Hospital Episode Statistics (HES) data from April 2013 to March 2018 on all adult patients undergoing pituitary surgery in England. A series of data quality indicators examined the attribution of cases to consultants, the coding of sellar and parasellar lesions, associated endocrine and visual disorders, and surgical procedures. Differences in data quality over time and between neurosurgical units were examined. Results A total of 5613 records describing pituitary procedures were identified. Overall, 97.3% had a diagnostic code for the tumour or lesion treated, with 29.7% (n = 1669) and 17.8% (n = 1000) describing endocrine and visual disorders, respectively. There was a significant reduction from the first to the fifth year in records that only contained a pituitary tumour code (63.7%–47.0%, p < .001). The use of procedure codes that attracted the highest tariff increased over time (66.4%–82.4%, p < .001). Patterns of coding varied widely between the 24 neurosurgical units. Conclusion The quality of HES data on pituitary surgery has improved over time but there is wide variation in the quality of data between neurosurgical units. Research studies and quality improvement programmes using these data need to check it is of sufficient quality to not invalidate their results

    Polyelectrolyte Complex Templated Synthesis of Monodisperse, Sub-100 nm Porous Silica Nanoparticles for Cancer Targeted and Stimuli-Responsive Drug Delivery

    Get PDF
    Porous silica nanoparticles (PSiNPs) have long attracted interest in drug delivery research. However, conventional synthesis methods for sub-100 nm, functionalised PSiNPs typically give poor monodispersity, reproducibility, or involve complex synthetic protocols. We report a facile, reproducible, and cost-effective one-pot method for the synthesis of cancer targeting and pH responsive PSiNPs in this size range, without the need for post-synthetic modification. This was achieved by using monodisperse L-arginine (Arg)/ poly(acrylic acid) (PAA) polyelectrolyte complexes (PECs) as soft templates for silane hydrolysis and condensation. Highly uniform PSiNPs with tunable size control between 42 and 178 nm and disordered pore structure (1.1–2.7 nm) were obtained. Both PAA and Arg were retained within the PSiNPs, which enabled a high doxorubicin hydrochloride (Dox) loading capacity (22% w/w) and a 4-fold increase in drug release under weakly acidic pH compared to physiological pH. The surface presentation of Arg conferred significantly higher intracellular accumulation of Arg/PAA-PSiNPs in patient-derived glioblastoma cells compared to non-tumorigenic neural progenitor cells, which effectively translated to lower IC50 values for Dox-loaded Arg/PAA-PSiNPs than non-functionalised PSiNPs. This work brings forward new insights for the development of monodisperse PSiNPs with highly desirable built-in functionalities for biomedical applications

    Symplastic scrotal leiomyoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Scrotal leiomyomas are rare tumours which are essentially benign. Recurrence and malignant transformation to leiomyosarcoma have been reported. However, a specific subgroup with increased bizarre nuclei showing increased mitosis raises the need for a closer follow-up. We report on such a case.</p> <p>Case presentation</p> <p>We report the case of a 65-year-old man who underwent a scrotal lump excision. Histology showed a well defined leiomyoma. The presence of nuclear pleomorphism and mitoses, just falling short of the criteria for malignancy, made prediction of biological behaviour difficult. The patient remains well on 4-year follow-up.</p> <p>Conclusion</p> <p>Histological evidence of increased mitosis raises the need for sustained follow-up in view of the malignant potential from the extent of mitosis. Immunohistochemistry helps in identifying those patients warranting close follow-up.</p

    Expression profiling of single cells and patient cohorts identifies multiple immunosuppressive pathways and an altered NK cell phenotype in glioblastoma.

    Get PDF
    Glioblastoma (GBM) is an aggressive cancer with a very poor prognosis. Generally viewed as weakly immunogenic, GBM responds poorly to current immunotherapies. To understand this problem more clearly we used a combination of natural killer (NK) cell functional assays together with gene and protein expression profiling to define the NK cell response to GBM and explore immunosuppression in the GBM microenvironment. In addition, we used transcriptome data from patient cohorts to classify GBM according to immunological profiles. We show that glioma stem-like cells, a source of post-treatment tumour recurrence, express multiple immunomodulatory cell surface molecules and are targeted in preference to normal neural progenitor cells by natural killer (NK) cells ex vivo. In contrast, GBM-infiltrating NK cells express reduced levels of activation receptors within the tumour microenvironment, with hallmarks of transforming growth factor (TGF)-β-mediated inhibition. This NK cell inhibition is accompanied by expression of multiple immune checkpoint molecules on T cells. Single-cell transcriptomics demonstrated that both tumour and haematopoietic-derived cells in GBM express multiple, diverse mediators of immune evasion. Despite this, immunome analysis across a patient cohort identifies a spectrum of immunological activity in GBM, with active immunity marked by co-expression of immune effector molecules and feedback inhibitory mechanisms. Our data show that GBM is recognized by the immune system but that anti-tumour immunity is restrained by multiple immunosuppressive pathways, some of which operate in the healthy brain. The presence of immune activity in a subset of patients suggests that these patients will more probably benefit from combination immunotherapies directed against multiple immunosuppressive pathways

    External validation and recalibration of an incidental meningioma prognostic model – IMPACT: protocol for an international multicentre retrospective cohort study

    Get PDF
    Introduction: Due to the increased use of CT and MRI, the prevalence of incidental findings on brain scans is increasing. Meningioma, the most common primary brain tumour, is a frequently encountered incidental finding, with an estimated prevalence of 3/1000. The management of incidental meningioma varies widely with active clinical-radiological monitoring being the most accepted method by clinicians. Duration of monitoring and time intervals for assessment, however, are not well defined. To this end, we have recently developed a statistical model of progression risk based on single-centre retrospective data. The model Incidental Meningioma: Prognostic Analysis Using Patient Comorbidity and MRI Tests (IMPACT) employs baseline clinical and imaging features to categorise the patient with an incidental meningioma into one of three risk groups: low, medium and high risk with a proposed active monitoring strategy based on the risk and temporal trajectory of progression, accounting for actuarial life expectancy. The primary aim of this study is to assess the external validity of this model. Methods and analysis: IMPACT is a retrospective multicentre study which will aim to include 1500 patients with an incidental intracranial meningioma, powered to detect a 10% progression risk. Adult patients ≥16 years diagnosed with an incidental meningioma between 1 January 2009 and 31 December 2010 will be included. Clinical and radiological data will be collected longitudinally until the patient reaches one of the study endpoints: intervention (surgery, stereotactic radiosurgery or fractionated radiotherapy), mortality or last date of follow-up. Data will be uploaded to an online Research Electronic Data Capture database with no unique identifiers. External validity of IMPACT will be tested using established statistical methods. Ethics and dissemination: Local institutional approval at each participating centre will be required. Results of the study will be reported through peer-reviewed articles and conferences and disseminated to participating centres, patients and the public using social media

    CONSORT recommendations in abstracts of randomised, controlled trials on migraine and headache

    Get PDF
    A CONSORT statement on the content of abstracts of randomised, controlled trials (RCTs) was published in 2008. I therefore reviewed the abstracts from 2009 to 2010 published on RCTs in Cephalalgia, Headache and other (non-headache) journals. The following items were reviewed: number of patients, reporting of response either in percentages or absolute values, the use of p values, and effect size with its precision. The latter was recommended in the CONSORT statement. A total of 46 abstracts were reviewed and effect size with 95% confidence intervals was only reported in seven abstracts. The influence of the CONSORT statement on reporting in abstracts has so far only had a limited influence on the headache literature

    Do animal models of brain tumors replicate human peritumoral edema? a systematic literature search

    Get PDF
    Introduction Brain tumors cause morbidity and mortality in part through peritumoral brain edema. The current main treatment for peritumoral brain edema are corticosteroids. Due to the increased recognition of their side-effect profile, there is growing interest in finding alternatives to steroids but there is little formal study of animal models of peritumoral brain edema. This study aims to summarize the available literature. Methods A systematic search was undertaken of 5 literature databases (Medline, Embase, CINAHL, PubMed and the Cochrane Library). The generic strategy was to search for various terms associated with “brain tumors”, “brain edema” and “animal models”. Results We identified 603 reports, of which 112 were identified as relevant for full text analysis that studied 114 peritumoral brain edema animal models. We found significant heterogeneity in the species and strain of tumor-bearing animals, tumor implantation method and edema assessment. Most models did not produce appreciable brain edema and did not test for observable manifestations thereof. Conclusion No animal model currently exists that enable the investigation of novel candidates for the treatment of peritumoral brain edema. With current interest in alternative treatments for peritumoral brain edema, there is an unmet need for clinically relevant animal models
    corecore