40 research outputs found

    Surface diffusion in catalysts probed by APGSTE NMR

    Get PDF
    In this work we report the application of a recently developed experimental protocol using Pulsed Field Gradient (PFG) Nuclear Magnetic Resonance (NMR) techniques to simultaneously assess bulk pore and surface diffusion coefficients in liquid saturated porous catalysts. This method has been developed to study solvent effects on the diffusion of methyl ethyl ketone (MEK) in mesoporous 1 wt% Pd/Al2O3 catalyst trilobes. The selection of solvents used in this work is known to have a complex effect on reaction rates and hence catalyst performance in heterogeneous liquid phase catalysis. Here, we report the bulk pore and surface diffusion characteristics of MEK, water and isopropyl alcohol (IPA) in 1 wt% Pd/Al2O3 catalyst trilobes. The results show that the physicochemical interactions of molecules in the porous catalyst matrix are very different for the different molecules. We also find that the mobility of water appears to be affected strongest by the catalyst surface

    Mesoscopic structuring and dynamics of alcohol/water solutions probed by terahertz time-domain spectroscopy and pulsed field gradient nuclear magnetic resonance.

    Get PDF
    Terahertz and PFG-NMR techniques are used to explore transitions in the structuring of binary alcohol/water mixtures. Three critical alcohol mole fractions (x1, x2, x3) are identified: methanol (10, 30, 70 mol %), ethanol (7, 15, 60 mol %), 1-propanol (2, 10, 50 mol %), and 2-propanol (2, 10, 50 mol %). Above compositions of x1 no isolated alcohol molecules exist, and below x1 the formation of large hydration shells around the hydrophobic moieties of the alcohol is favored. The maximum number of water molecules, N0, in the hydration shell surrounding a single alcohol molecule increases with the length of the carbon chain of the alcohol. At x2 the greatest nonideality of the liquid structure exists with the formation of extended hydrogen bonded networks between alcohol and water molecules. The terahertz data show the maximum absorption relative to that predicted for an ideal mixture at that composition, while the PFG-NMR data exhibit a minimum in the alkyl chain self-diffusivity at x2, showing that the alcohol has reached a minimum in diffusion when this extended alcohol-water network has reached the highest degree of structuring. At x3 an equivalence of the alkyl and alcohol hydroxyl diffusion coefficients is determined by PFG-NMR, suggesting that the molecular mobility of the alcohol molecules becomes independent of that of the water molecules.This is the final published version. It's also available from the Journal of Physical Chemistry B here: http://pubs.acs.org/doi/abs/10.1021/jp502799x

    Integrative Analysis of Clinicopathological Features Defines Novel Prognostic Models for Mantle Cell Lymphoma in the Immunochemotherapy Era: A Report from The North American Mantle Cell Lymphoma Consortium

    Get PDF
    BACKGROUND: Patients with mantle cell lymphoma (MCL) exhibit a wide variation in clinical presentation and outcome. However, the commonly used prognostic models are outdated and inadequate to address the needs of the current multidisciplinary management of this disease. This study aims to investigate the clinical and pathological features of MCL in the immunochemotherapy era and improve the prognostic models for a more accurate prediction of patient outcomes. METHODS: The North American Mantle Cell Lymphoma Project is a multi-institutional collaboration of 23 institutions across North America to evaluate and refine prognosticators for front-line therapy. A total of 586 MCL cases diagnosed between 2000 and 2012 are included in this study. A comprehensive retrospective analysis was performed on the clinicopathological features, treatment approaches, and outcomes of these cases. The establishment of novel prognostic models was based on in-depth examination of baseline parameters, and subsequent validation in an independent cohort of MCL cases. RESULTS: In front-line strategies, the use of hematopoietic stem cell transplantation was the most significant parameter affecting outcomes, for both overall survival (OS, p \u3c 0.0001) and progression-free survival (PFS, p \u3c 0.0001). P53 positive expression was the most significant pathological parameter correlating with inferior outcomes (p \u3c 0.0001 for OS and p = 0.0021 for PFS). Based on the baseline risk factor profile, we developed a set of prognostic models incorporating clinical, laboratory, and pathological parameters that are specifically tailored for various applications. These models, when tested in the validation cohort, exhibited strong predictive power for survival and showed a stratification resembling the training cohort. CONCLUSIONS: The outcome of patients with MCL has markedly improved over the past two decades, and further enhancement is anticipated with the evolution of clinical management. The innovative prognostic models developed in this study would serve as a valuable tool to guide the selection of more suitable treatment strategies for patients with MCL

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio