1,757 research outputs found

    A high efficiency photon veto for the Light Dark Matter eXperiment

    Get PDF
    Fixed-target experiments using primary electron beams can be powerful discovery tools for light dark matter in the sub-GeV mass range. The Light Dark Matter eXperiment (LDMX) is designed to measure missing momentum in high-rate electron fixed-target reactions with beam energies of 4 GeV to 16 GeV. A prerequisite for achieving several important sensitivity milestones is the capability to efficiently reject backgrounds associated with few-GeV bremsstrahlung, by twelve orders of magnitude, while maintaining high efficiency for signal. The primary challenge arises from events with photo-nuclear reactions faking the missing-momentum property of a dark matter signal. We present a methodology developed for the LDMX detector concept that is capable of the required rejection. By employing a detailed Geant4-based model of the detector response, we demonstrate that the sampling calorimetry proposed for LDMX can achieve better than 10⁻¹³ rejection of few-GeV photons. This suggests that the luminosity-limited sensitivity of LDMX can be realized at 4 GeV and higher beam energies

    A high efficiency photon veto for the Light Dark Matter eXperiment

    Get PDF
    Fixed-target experiments using primary electron beams can be powerful discovery tools for light dark matter in the sub-GeV mass range. The Light Dark Matter eXperiment (LDMX) is designed to measure missing momentum in high-rate electron fixed-target reactions with beam energies of 4 GeV to 16 GeV. A prerequisite for achieving several important sensitivity milestones is the capability to efficiently reject backgrounds associated with few-GeV bremsstrahlung, by twelve orders of magnitude, while maintaining high efficiency for signal. The primary challenge arises from events with photo-nuclear reactions faking the missing-momentum property of a dark matter signal. We present a methodology developed for the LDMX detector concept that is capable of the required rejection. By employing a detailed Geant4-based model of the detector response, we demonstrate that the sampling calorimetry proposed for LDMX can achieve better than 10⁻¹³ rejection of few-GeV photons. This suggests that the luminosity-limited sensitivity of LDMX can be realized at 4 GeV and higher beam energies

    Dark sectors 2016 Workshop: community report

    Get PDF
    This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years

    Design, Performance, and Calibration of the CMS Hadron-Outer Calorimeter

    Get PDF
    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with an outer calorimeter to ensure high energy shower containment in the calorimeter. Fabrication, testing and calibration of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing \et measurements at LHC energies. The outer hadron calorimeter will also be used for the muon trigger in coincidence with other muon chambers in CMS

    Design, Performance, and Calibration of CMS Hadron-Barrel Calorimeter Wedges

    Get PDF
    Extensive measurements have been made with pions, electrons and muons on four production wedges of the Compact Muon Solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. Data were taken both with and without a prototype electromagnetic lead tungstate crystal calorimeter (EB) in front of the hadron calorimeter. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. These measurements set the absolute calibration of the HB prior to first pp collisions to approximately 4%

    Energy Response and Longitudinal Shower Profiles Measured in CMS HCAL and Comparison With Geant4

    Get PDF
    The response of the CMS combined electromagnetic and hadron calorimeter to beams of pions with momenta in the range 5-300 GeV/c has been measured in the H2 test beam at CERN. The raw response with the electromagnetic compartment calibrated to electrons and the hadron compartment calibrated to 300 GeV pions may be represented by sigma = (1.2) sqrt{E} oplus (0.095) E. The fraction of energy visible in the calorimeter ranges from 0.72 at 5 GeV to 0.95 at 300 GeV, indicating a substantial nonlinearity. The intrinsic electron to hadron ratios are fit as a function of energy and found to be in the range 1.3-2.7 for the electromagnetic compartment and 1.4-1.8 for the hadronic compartment. The fits are used to correct the non-linearity of the e pi response to 5% over the entire measured range resulting in a substantially improved resolution at low energy. Longitudinal shower profile have been measured in detail and compared to Geant4 models, LHEP-3.7 and QGSP-2.8. At energies below 30 GeV, the data, LHEP and QGSP are in agreement. Above 30 GeV, LHEP gives a more accurate simulation of the longitudinal shower profile

    Synchronization and Timing in CMS HCAL

    Get PDF
    The synchronization and timing of the hadron calorimeter (HCAL) for the Compact Muon Solenoid has been extensively studied with test beams at CERN during the period 2003-4, including runs with 40 MHz structured beam. The relative phases of the signals from different calorimeter segments are timed to 1 ns accuracy using a laser and equalized using programmable delay settings in the front-end electronics. The beam was used to verify the timing and to map out the entire range of pulse shapes over the 25 ns interval between beam crossings. These data were used to make detailed measurements of energy-dependent time slewing effects and to tune the electronics for optimal performance

    Safety and Efficacy of a Dapivirine Vaginal Ring for HIV Prevention in Women.

    Get PDF
    BACKGROUND: The incidence of human immunodeficiency virus (HIV) infection remains high among women in sub-Saharan Africa. We evaluated the safety and efficacy of extended use of a vaginal ring containing dapivirine for the prevention of HIV infection in 1959 healthy, sexually active women, 18 to 45 years of age, from seven communities in South Africa and Uganda. METHODS: In this randomized, double-blind, placebo-controlled, phase 3 trial, we randomly assigned participants in a 2:1 ratio to receive vaginal rings containing either 25 mg of dapivirine or placebo. Participants inserted the rings themselves every 4 weeks for up to 24 months. The primary efficacy end point was the rate of HIV type 1 (HIV-1) seroconversion. RESULTS: A total of 77 participants in the dapivirine group underwent HIV-1 seroconversion during 1888 person-years of follow-up (4.1 seroconversions per 100 person-years), as compared with 56 in the placebo group who underwent HIV-1 seroconversion during 917 person-years of follow-up (6.1 seroconversions per 100 person-years). The incidence of HIV-1 infection was 31% lower in the dapivirine group than in the placebo group (hazard ratio, 0.69; 95% confidence interval [CI], 0.49 to 0.99; P=0.04). There was no significant difference in efficacy of the dapivirine ring among women older than 21 years of age (hazard ratio for infection, 0.63; 95% CI, 0.41 to 0.97) and those 21 years of age or younger (hazard ratio, 0.85; 95% CI, 0.45 to 1.60; P=0.43 for treatment-by-age interaction). Among participants with HIV-1 infection, nonnucleoside reverse-transcriptase inhibitor resistance mutations were detected in 14 of 77 participants in the dapivirine group (18.2%) and in 9 of 56 (16.1%) in the placebo group. Serious adverse events occurred more often in the dapivirine group (in 38 participants [2.9%]) than in the placebo group (in 6 [0.9%]). However, no clear pattern was identified. CONCLUSIONS: Among women in sub-Saharan Africa, the dapivirine ring was not associated with any safety concerns and was associated with a rate of acquisition of HIV-1 infection that was lower than the rate with placebo. (Funded by the International Partnership for Microbicides; ClinicalTrials.gov number, NCT01539226 .)

    Design, Performance and Calibration of the CMS Forward Calorimeter Wedges

    Get PDF
    We report on the test beam results and calibration methods using charged particles of the CMS Forward Calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3\l |\eta| \le 5), and is essential for large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h \approx 5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/\sqrt{E} + b. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%
    corecore