8 research outputs found

    Multipartite entanglement detection for hypergraph states

    Full text link
    We study the entanglement properties of quantum hypergraph states of nn qubits, focusing on multipartite entanglement. We compute multipartite entanglement for hypergraph states with a single hyperedge of maximum cardinality, for hypergraph states endowed with all possible hyperedges of cardinality equal to n−1n-1 and for those hypergraph states with all possible hyperedges of cardinality greater than or equal to n−1n-1. We then find a lower bound to the multipartite entanglement of a generic quantum hypergraph state. We finally apply the multipartite entanglement results to the construction of entanglement witness operators, able to detect genuine multipartite entanglement in the neighbourhood of a given hypergraph state. We first build entanglement witnesses of the projective type, then propose a class of witnesses based on the stabilizer formalism, hence called stabilizer witnesses, able to reduce the experimental effort from an exponential to a linear growth in the number of local measurement settings with the number of qubits

    Thermodynamique des bosons fortement interagissants : nouveaux résultats et approches numériques

    No full text
    Cold atoms in optical lattices offer unprecedented control over strongly correlatedmany-body states. For this reason they represent an excellent tool for the implementation ofa “quantum simulator”, which can be used to realize experimentally several Hamiltonians ofsystems of physical interest. In particular, they enable the engineering of artificial gaugefields, which gives access to the physics of frustrated magnetism. In this work, we study thethermodynamics of cold atoms both from a theoretical and a numerical point of view. Atpresent days, the most effective method used in this field is the quantum Monte Carlo. Butbecause of the so-called “sign problem” it can only be applied to a limited class of systems,which for example do not include frustrated systems. The interest of this thesis is to developof a new approximated method based on a Monte Carlo approach. The first part of this workis dedicated to theoretical considerations concerning the spatial structure of quantum andclassical correlations. These results permit to develop, in the second part, an approximationcalled quantum mean-field. This latter allows to propose, in the third part, a numericalmethod that we call “auxiliary-field Monte Carlo” and that we apply to some systems ofphysical interest, among which the frustrated triangular lattice.Les atomes froids dans les réseaux optiques permettent d'avoir un contrôle sans précédent des états a N-corps fortement corrélés. Pour cette raison, ils représentent un excellent outil pour l'implémentation d'un « simulateur quantique », utile pour réaliser de manière expérimentale de nombreux hamiltoniens de systèmes d'intérêt physique. En particulier, ils rendent possible la création de champs de jauge artificiels; ces derniers permettant d'accéder à la physique du magnétisme frustré. Dans ce travail, il s'agit de s'intéresser à la thermodynamique des atomes froids, en abordant ce sujet de manière théorique et numérique. A ce jour, le Monte Carlo quantique est la méthode la plus efficace dans ce domaine. Néanmoins, en raison de ce qu'on appelle le « problème du signe », elle ne peut s'appliquer qu'à une classe restreinte de systèmes, et dont par exemple les systèmes frustrés ne font pas partie. L'intérêt de cette thèse est de développer une nouvelle méthode approximée fondée sur une approche Monte Carlo. La première partie de cette thèse est consacrée à des considérations de nature théorique sur la structure spatiale des corrélations classiques et quantiques. Ces résultats nous permettent de développer, dans une deuxième partie, une approximation nommée « champ moyen quantique ». Celle-ci permet de proposer, dans une troisième partie, une méthode numérique qu'on appelle « Monte Carlo du champ auxiliaire » et qu'on applique à des cas d'intérêt physique, notamment au réseau triangulaire frustré

    Quantum mean-field approximation for lattice quantum models: truncating quantum correlations, and retaining classical ones

    No full text
    International audienceThe mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016)PRLTAO0031-900710.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T=0, while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T→0, while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical approaches based on an approximate, yet systematically improved account of quantum correlations