17 research outputs found

    Metagenomic assessment of nitrate-contaminated mine wastewaters and optimization of complete denitrification by indigenous enriched bacteria

    Get PDF
    Nitrate contamination in water remains to be on the rise globally due to continuous anthropogenic activities, such as mining and farming, which utilize high amounts of ammonium nitrate explosives and chemical-NPK-fertilizers, respectively. This study presents insights into the development of a bioremediation strategy to remove nitrates (NO3−) using consortia enriched from wastewater collected from a diamond mine in Lesotho and a platinum mine in South Africa. A biogeochemical analysis was conducted on the water samples which aided in comparing and elucidating their unique physicochemical parameters. The chemical analysis uncovered that both wastewater samples contained over 120 mg/L of NO3− and over 250 mg/L of sulfates (SO42-), which were both beyond the acceptable limit of the environmental surface water standards of South Africa. The samples were atypical of mine wastewaters as they had low concentrations of dissolved heavy metals and a pH of over 5. A metagenomic analysis applied to study microbial diversities revealed that both samples were dominated by the phyla Proteobacteria and Bacteroidetes, which accounted for over 40% and 15%, respectively. Three consortia were enriched to target denitrifying bacteria using selective media and then subjected to complete denitrification experiments. Denitrification dynamics and denitrifying capacities of the consortia were determined by monitoring dissolved and gaseous nitrogen species over time. Denitrification optimization was carried out by changing environmental conditions, including supplementing the cultures with metal enzyme co-factors (iron and copper) that were observed to promote different stages of denitrification. Copper supplemented at 50 mg/L was observed to be promoting complete denitrification of over 500 mg/L of NO3−, evidenced by the emission of nitrogen gas (N2) that was more than nitrous oxide gas (N2O) emitted as the terminal by-product. Modification and manipulation of growth conditions based on the microbial diversity enriched proved that it is possible to optimize a bioremediation system that can reduce high concentrations of NO3−, while emitting an environmentally-friendly N2 instead of N2O, that is, a greenhouse gas. Data collected and discussed in this research study can be used to model an upscale NO3− bioremediation system aimed to remove nitrogenous and other contaminants without secondary contamination

    Cost and Financial Management 2A

    Get PDF
    Exam paper for second semester: Cost and Financial Management 2

    Mechanobiological Modulation of Cytoskeleton and Calcium Influx in Osteoblastic Cells by Short-Term Focused Acoustic Radiation Force

    Get PDF
    Mechanotransduction has demonstrated potential for regulating tissue adaptation in vivo and cellular activities in vitro. It is well documented that ultrasound can produce a wide variety of biological effects in biological systems. For example, pulsed ultrasound can be used to noninvasively accelerate the rate of bone fracture healing. Although a wide range of studies has been performed, mechanism for this therapeutic effect on bone healing is currently unknown. To elucidate the mechanism of cellular response to mechanical stimuli induced by pulsed ultrasound radiation, we developed a method to apply focused acoustic radiation force (ARF) (duration, one minute) on osteoblastic MC3T3-E1 cells and observed cellular responses to ARF using a spinning disk confocal microscope. This study demonstrates that the focused ARF induced F-actin cytoskeletal rearrangement in MC3T3-E1 cells. In addition, these cells showed an increase in intracellular calcium concentration following the application of focused ARF. Furthermore, passive bending movement was noted in primary cilium that were treated with focused ARF. Cell viability was not affected. Application of pulsed ultrasound radiation generated only a minimal temperature rise of 0.1°C, and induced a streaming resulting fluid shear stress of 0.186 dyne/cm2, suggesting that hyperthermia and acoustic streaming might not be the main causes of the observed cell responses. In conclusion, these data provide more insight in the interactions between acoustic mechanical stress and osteoblastic cells. This experimental system could serve as basis for further exploration of the mechanosensing mechanism of osteoblasts triggered by ultrasound

    Environmental and geochemical characterization of alkaline mine wastes from Phalaborwa (Palabora) Complex, South Africa

    No full text
    A detailed characterization of alkaline tailing ponds and waste rock dumps from Phalaborwa Igneous Complex (PIC) South Africa, has been accomplished. The study goes beyond the environmental characterization of mining wastes, offering the first insight towards the recycling of the wastes as alkaline reagent to neutralize acid industrial wastewater. To achieve these aims, tailings and waste rocks were characterized using a combination of conventional, novel and modified Acid Rock Drainage (ARD) prediction methodologies, as well as South African leachate tests, sequential extractions and pseudo-total digestions. The scarcity of Fe-sulphide minerals and the abundance of alkaline minerals indicated that PIC wastes are not ARD producers. The highest neutralization potential was found in the carbonatite rocks and East tailing samples (range between 289 and 801 kg CaCO3 eq/t). According to the National Environmental Management Waste Act (59/2008) of South Africa, tailing ponds and waste rock dumps from PIC classify as non-hazardous (Type 3 waste). The sequential extractions showed that the different fractions from most of the samples would mostly release sulphate and non-toxic elements, such as Ca, Mg, Na and K, which might be a concern if leached in high concentration. In addition, relatively high concentrations of radionuclides, such as U and Th (average of 6.7 and 36.3 mg/kg, respectively) are present in the non-labile fraction of PIC wastes, while the leachable concentrations were always below 0.006 mg/L. Among PIC wastes, East tailing would be the best option as alkaline reagent to neutralize acid wastewater because of its high neutralization potential and non-harmful leachate composition. In general, this study exposes the shortcomings in mine waste characterization, particularly for alkaline mine wastes, and introduces the assessment of potential revalorization as a novel practice in mine waste characterization that, if extended as a regular practice, would facilitate a circular economy approach to the mining industry with its consequent economic and environmental benefits

    Propolis efficacy on SARS-COV viruses:a review on antimicrobial activities and molecular simulations

    No full text
    This current study review provides a brief review of a natural bee product known as propolis and its relevance toward combating SARS-CoV viruses. Propolis has been utilized in medicinal products for centuries due to its excellent biological properties. These include anti-oxidant, immunomodulatory, anti-inflammatory, anti-viral, anti-fungal, and bactericidal activities. Furthermore, studies on molecular simulations show that flavonoids in propolis may reduce viral replication. While further research is needed to validate this theory, it has been observed that COVID-19 patients receiving propolis show earlier viral clearance, enhanced symptom recovery, quicker discharge from hospitals, and a reduced mortality rate relative to other patients. As a result, it appears that propolis could probably be useful in the treatment of SARS-CoV-2-infected patients. Therefore, this review sought to explore the natural properties of propolis and further evaluated past studies that investigated propolis as an alternative product for the treatment of COVID-19 symptoms. In addition, the review also highlights the possible mode of propolis action as well as molecular simulations of propolis compounds that may interact with the SARS-CoV-2 virus. The activity of propolis compounds in decreasing the impact of COVID-19-related comorbidities, the possible roles of such compounds as COVID-19 vaccine adjuvants, and the use of nutraceuticals in COVID-19 treatment, instead of pharmaceuticals, has also been discussed