389 research outputs found

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    Impact of magnetic field on the stability of the CMS GE1/1 GEM detector operation

    Get PDF
    The Gas Electron Multiplier (GEM) detectors of the GE1/1 station of the CMS experiment have been operated in the CMS magnetic field for the first time on the 7th^{th} of October 2021. During the magnetic field ramps, several discharge phenomena were observed, leading to instability in the GEM High Voltage (HV) power system. In order to reproduce the behavior, it was decided to conduct a dedicated test at the CERN North Area with the Goliath magnet, using four GE1/1 spare chambers. The test consisted in studying the characteristics of discharge events that occurred in different detector configurations and external conditions. Multiple magnetic field ramps were performed in sequence: patterns in the evolution of the discharge rates were observed with these data. The goal of this test is the understanding of the experimental conditions inducing discharges and short circuits in a GEM foil. The results of this test lead to the development of procedure for the optimal operation and performance of GEM detectors in the CMS experiment during the magnet ramps. Another important result is the estimation of the probability of short circuit generation, at 68 % confidence level, pshort_{short}HV^{HV} OFF^{OFF} = 0.420.35+0.94^{-0.35+0.94}% with detector HV OFF and pshort_{short}HV^{HV} OFF^{OFF} < 0.49% with the HV ON. These numbers are specific for the detectors used during this test, but they provide a first quantitative indication on the phenomenon, and a point of comparison for future studies adopting the same procedure
    corecore