265 research outputs found

    RELATIONSHIP AMONG ENTERO-TOXIGENIC PHENOTYPES, SEROTYPES, AND SOURCES OF STRAINS IN ENTERO-TOXIGENIC ESCHERICHIA-COLI

    Get PDF
    281242

    Assessing early memories of threat and subordination: Confirmatory factor analyisis of the early life experiences scale for adolescents.

    Get PDF
    The Early Life Experiences Scale (ELES) is a self-report questionnaire that assesses personal feelings of perceived threat and submissiveness in interactions within family. This paper presents the adaptation and validation of the ELES in Portuguese language for adolescents. The sample was composed of 771 adolescents from community schools with ages between 13 and 18 years old. Along with ELES, participants also answered the Early Memories of Warmth and Safeness Scale and the Positive and Negative Affect Schedule for Children and Adolescents. Confirmatory factor analysis (CFA) was performed to test the factor structure of the ELES and results confirm a three-factor structure, composed by Threat, Submissiveness and Unvalued dimensions. These emotional memories focused on perceived threat, submissiveness and unvalued seem to have a distinct nature. The scale also showed adequate internal consistency, good test-retest reliability and convergent validity with measures of positive emotional memories, positive and negative affect. There were sex differences for threat subscale and age differences for submissiveness subscale. Overall, these findings suggest that the ELES in its Portuguese version for adolescents may be a useful tool for research, educational and clinical contexts with school-aged adolescents

    Responsive Production in Manufacturing: A Modular Architecture

    Full text link
    [EN] This paper proposes an architecture aiming at promoting the convergence of the physical and digital worlds, through CPS and IoT technologies, to accommodate more customized and higher quality products following Industry 4.0 concepts. The architecture combines concepts such as cyber-physical systems, decentralization, modularity and scalability aiming at responsive production. Combining these aspects with virtualization, contextualization, modeling and simulation capabilities it will enable self-adaptation, situational awareness and decentralized decision-making to answer dynamic market demands and support the design and reconfiguration of the manufacturing enterprise.The research leading to these results has received funding from the European Union H2020 project C2 NET (FoF-01-2014) nr 636909.Marques, M.; Agostinho, C.; Zacharewicz, G.; Poler, R.; Jardim-Goncalves, R. (2018). Responsive Production in Manufacturing: A Modular Architecture. Studies in Systems, Decision and Control. 140:231-254. https://doi.org/10.1007/978-3-319-78437-3_10S231254140European Commission: For a European Industrial Renaissance, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions (2014)Hartmann, B., King, W.P., Narayanan, S.: Digital manufacturing: the revolution will be virtualized. McKinsey & Company (2015)European Forum for Manufacture: Driving Innovation and Growth in European Manufacturing (2015)European Factories of the Future Research Association (EFFRA): Factories of the Future: Multi-annual Roadmap for the Contractual PPP under the Horizon 2020 (2013)European Commission: Horizon 2020—Work Programme 2016–2017: 17. Cross-cutting Activities (2016)Schlaepfer, R.C., Koch, M., Merkofer, P.: Industry 4.0 challenges and solutions for the digital transformation and use of exponential technologies. Deloitte AG (2015)7iD: Industry 4.0. https://www.7id.com/technology/industry-4-0/ (2016)European Commission: Horizon 2020—Work Program 2016-2017—Cross-cutting Activities, 25 July 2016EFFRA: Factories of the Future: Multi-annual Roadmap for the Contractual PPP under the Horizon 2020 (2013)FInES Research Roadmap Task Force (2012)Jacinto, J.: Smart manufacturing? Industry 4.0? What’s it all about? Siements Totally Integrated Automation, Automation World & Design World (2014)Monostori, L.: Cyber-physical production systems: roots, expectations and R&D challenges. Procedia CIRP 17, 9–13 (2014)Adolphs, P.: RAMI 4.0—An architectural Model for Industrie 4.0. Platform Industrie 4.0 (2015)Collins, M.: Why America has a shortage of skilled workers. Industry Week (2015)Forbes, J., Naujok, N., Geissbauer, R., Vedso, J., Schrauf, S.: Industry 4.0: building the digital enterprise. PWC (2016)World Economic Forum Industrial Internet Survey (2014)Chen, D., Vernadat, F.B.: Enterprise interoperability: a standardisation view. Enterprise Inter- and Intra-Organizational Integration, Volume 108 of the series IFIP—The International Federation for Information Processing, pp. 273–282 (2003)Yan, L., Li, Z., Yuan, X.: Study on method-of-robust-multidisciplinary-design-collaborative-decision for product design. Inf. Technol. J. 8(4), 441–452 (2009)Ruiz Dominguez, G. A.: Caractérisation de l’activité de conception collaborative à distance: étude des effets de synchronisation cognitive (2005)Jung, J.J.: Reusing ontology mappings for query routing in semantic peer-to-peer environment. Inf. Sci. (2010). https://doi.org/10.1016/j.ins.2010.04.018Ranjan, R., Zhao, L., Wu, X., Liu, A., Quiroz, A., Parashar, M.: Peer-to-Peer Cloud Provisioning: Service Discovery and Load-Balancing. https://doi.org/10.1007/978-1-84996-241-4_12Agostinho, C., Pinto, P., Jardim-goncalves, R.: Dynamic adaptors to support model-driven interoperability and enhance sensing enterprise networks. In: 19th World Congress of the International Federation of Automatic Control (IFAC’14), Cape Town, South Africa (2014)Chen, D., Doumeingts, G., Vernadat, F.: Architectures for enterprise integration and interoperability: past, present and future. Comput. Ind. 59, 647–659 (2008). https://doi.org/10.1016/j.compind.2007.12.016Ducq, Y., Chen, D., Alix, T.: Principles of servitization and definition of an architecture for model driven service system engineering. In: 4th International IFIP Working Conference on Enterprise Interoperability (IWEI 2012), Harbin, China, 2012. https://doi.org/10.1007/978-3-642-33068-17_12Elvesæter, B., Hahn, A., Berre, A., Neple, T.: Towards an interoperability framework for model-driven development of software systems. In: 1st International Conference on Interoperability Enterprise Software and Applications. Springer. http://www.springerlink.com/index/L10NU4306N054T6G.pdf (2005)OMG: MDA Guide Version 1.0.1 (omg/2003-06-01), Object Management Group. http://www.omg.org/cgibin/doc?omg/03-06-01.pdf (2003)Agostinho, C., Ducq, Y., Zacharewicz, G., Sarraipa, J., Lampathaki, F., Poler, R., Jardim-Goncalves, R.: Towards a sustainable interoperability in networked enterprise information systems: trends of knowledge and model-driven technology. Comput. Ind. (2015). https://doi.org/10.1016/j.compind.2015.07.001Santucci, G., Martinez, C., Vlad-câlcic, D.: The sensing enterprise. In: FInES Work. FIA 2012, Aalborg, Denmark. http://www.theinternetofthings.eu/sites/default/files/%5Buser-name%5D/Sensing-enterprise.pdf (2012)Sriram, R.: Smart networked systems and societies: what will the future look like? In: IEEE IT Professional Conference (IT Pro). IEEE Computer Society (2014)Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., et al.: Big data: the next frontier for innovation, competition, and productivity. http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation (2011)Zacharewicz, G., Diallo, S., Ducq, Y., Agostinho, C., Jardim-Goncalves, R., Bazoun, H., Wang, Z., Doumeingts, G.: Model-based approaches for interoperability of next generation enterprise information systems: state of the art and future challenges. Inf. Syst. e-Bus. Manag. (2016). https://doi.org/10.1007/s10257-016-0317-8Jardim-Goncalves, R., Agostinho, C., Steiger-Garcao, A.: A reference model for sustainable interoperability in networked enterprises: towards the foundation of EI science base. Int. J. Comput. Integr. Manuf. 25(10) (2012). (Special Issue on Collaborative Manufacturing and Supply Chains). https://doi.org/10.1080/0951192x.2011.653831Schatsky, D., Muraskin, C.: Blockchain is coming to disrupt your industry. Deloitte (2015)Shi, J., Wan, J., Yan, H., Suo, H.: A survey of cyber-physical systems. In: International Conference on Wireless Communications and Signal Processing, pp. 1–6 (2011)Rajkumar, R.: Workshop report on foundations for innovation in cyber-physical systems. NIST. http://www.nist.gov/el/upload/CPS-WorkshopReport-1-30-13-Final.pdf/ (2013)Lee, J., Lapira, E., Yang, S. Kao, H.-A.: Predictive manufacturing system trends of next generation production systems. In: 11th IFAC Workshop on Intelligent Manufacturing Systems, vol. 11, issue 1, pp. 150–156 (2013)IDC: The digital universe of opportunities: rich data and increasing value of the internet of things. EMC Digital Universe. emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf . (2014)Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Technol. 1–6 (2011)Lee, J., Bagheri, B., Kao, H.-A.: A cyber physical systems architecture for Industry 4.0-based manufacturing system. Manuf. Lett. 2015, 3, 18–23 (2014). https://doi.org/10.1016/j.mfglet.2014.12.001Bagheri, B., Lee, J.: Big future for cyber-physical manufacturing systems. Design World. http://www.designworldonline.com/big-future-for-cyber-physical-manufacturing-systems/ (2015)Lucke, D., Constantinescu, C., Westkämper, E.: Smart factory-a step towards the next generation of manufacturing. Manufacturing Systems and Technologies for the New Frontier, pp. 115–118. Springer, London (2008)Weiser, M.: The Computer for the 21st Century. Scientific American, Special Issue on Communications. Comput. Netw. (1991)Westkämper, E., Jendoubi, L., Eissele, M., Ertl, T.: Smart factory—bridging the gap between digital planning and reality. Manuf. Syst. 35(4), 307–314 (2006)Goryachev, A., Kozhevnikov, S., Kolbova, E., Kuznetsov, O., Simonova, E., Skobelev, P., Tsarev, A., Shepilov, Y.: Smart factory: intelligent system for workshop resource allocation, scheduling, optimization and controlling in real time. Adv. Mater. Res. 630, 508–513 (2012)Agostinho, C., Marques-Lucena, C., Sesana, M., Felic, A., Fischer, K., Rubattino, C., Sarraipa, J.: Osmosis process development for innovative product design and validation. 2015 ASME IMECE, Houston, USA (2015)Ko, J., Lee, B., Lee, K., Hong, S.G., Kim, N., Paek, J.: Sensor virtualization module: virtualizing IoT devices on mobile smartphones for effective sensor data management. Int. J. Distrib. Sens. Netw. (2015). https://doi.org/10.1155/2015/730762Guo, T., Papaioannou, T.G., Aberer, K.: Efficient indexing and query processing of model-view sensor data in the cloud. J. Big Data Res. 1, 52–65 (2014)Kumra, S., Sharma, L., Khanna, Y., Chattri, A.: Analysing an industrial automation pyramid and providing service oriented architecture. Int. J. Eng. Trends Technol. 3(5), 586–594 (2012)Endsley, M.: Design and evaluation for situational awareness enhancement. In: Proceedings of the Human Factors Society 32nd Annual Meeting. HFES, Santa Monica, pp. 97–10 (1988)Stanton, N.A., Chambers, P.R., Piggott, J.: Situational awareness and safety. Saf. Sci. 39(3), 189–204 (2001)Endsley, M.: Toward a theory of situation awareness in dynamic systems. Hum. Factors (The Journal of the Human Factors and Ergonomics Society) 37, 32–64 (1995)Bedny, G., Meister, D.: Theory of activity and situation awareness. Int. J. Cogn. Ergon. 3(1), 63–72 (1999)Smith, K., Hancock, P.A.: Situation awareness is adaptive, externally directed consciousness. Hum. Factors (The Journal of the Human Factors and Ergonomics Society) 37(1), 137–148 (1995)Ranganathan, A., Campbell, R.H.: An infrastructure for context-awareness based on first order logic. Pers. Ubiquit. Comput. 7(6), 353–364 (2003)Ning, K., Scholze, S., Marques, M., Campos, A, Neves-Silva, R. O’Sullivan, D.: A service oriented platform for context aware knowledge enhancing. In: 5th IFAC Conference on Management and Control of Production and Logistics (2010)Marques, M., Sucic, B., Vuk, T.: Context-based decision support for sustainable optimization of energy consumption. KES Trans. Sustain. Des. Manuf. 1(1), 899–910 (2014)Schneeweiss, C.: Distributed decision making in supply chain management. Int. J. Product. Econ. 84, 71–83 (2003)Alemany, M.M.E., Alarcón, F., Lario, F.C., Boj, J.J.: An application to support the temporal and spatial distributed decision-making process in supply chain collaborative planning. Comput. Ind. 62(5), 519–540 (2011). https://doi.org/10.1016/j.compind.2011.02.002Hong, I.H., Ammons, J.C., Realff, M.J.: Centralized versus decentralized decision-making for recycled material flows. Environ. Sci. Technol. 42(4), 1172–1177 (2008)Pibernik, R., Sucky, E.: An approach to inter-domain master planning in supply chains. Int. J. Product. Econ. 108, 200–212 (2007). https://doi.org/10.1016/j.ijpe.2006.12.010Lee, H., Whang, S.: Decentralized multi-echelon supply chains: incentives and information. Manag. Sci. 45(5), 633–640 (1999)Jung, H., Chen, F., Jeong, B.: Decentralized supply chain planning framework for third party logistics partnership. Comput. Ind. Eng. 55(2), 348–364 (2008). https://doi.org/10.1016/j.cie.2007.12.017Wang, K.-J., Chen, M.-J.: Cooperative capacity planning and resource allocation by mutual outsourcing using ant algorithm in a decentralized supply chain. Expert Syst. Appl. 36(2), 2831–2842 (2009)Simon, H.A.: The Science of the Artificial, 1st edn. MIT Press, Cambridge, Mass, (1969). (3rd ed. in 1996, MIT Press)Mesarovic, M.D., Masko, D., Takahara, Y.: Theory of Hierarchical Multilevel Systems. Academic Press, New York and London (1970)Camarinha-Matos, L.M., Afsarmanesh, H.J.: Collaborative networks: a new scientific discipline. J. Intell. Manuf. 16(4), 439–452 (2005)Popplewell, K., Stojanovic, N., Abecker, A., Apostolou, D., Mentzas, G., Harding, J.: Supporting adaptive enterprise collaboration through semantic knowledge services. In: Enterprise Interoperability Iii: New Challenges and Industrial Approaches, pp. 381–393 (2008). http://doi.org/10.1007/978-1-84800-221-0_30Agostinho, C., Ducq, Y., Zacharewicz, G., Sarraipa, J., Lampathaki, F., Jardim-Goncalves, R., Poler, R.: Towards a sustainable interoperability in networked enterprise information systems: trends of knowledge and model-driven technology. Accepted for Publication at Computers in Industry. http://doi.org/10.1016/j.compind.2015.07.001Agostinho, C., Jardim-Gonçalves, R.: Sustaining interoperability of networked liquid-sensing enterprises: a complex systems perspective. Annu. Rev. Control 39, 128–143 (2015). https://doi.org/10.1016/j.arcontrol.2015.03.012Weichhart, G., Molina, A., Chen, D., Whitman, L. E., Vernadat, F.: Challenges and current developments for sensing, smart and sustainable enterprise systems. Computers in Industry (2015). http://doi.org/10.1016/j.compind.2015.07.002Weichhart, G.: Supporting Interoperability for Chaotic and Complex Adaptive Enterprise Systems. On the Move to Meaningful Internet Systems: OTM 2013 Workshops. Confederated International Workshops: OTM Academy, OTM Industry Case Studies Program, ACM, EI2N, ISDE, META4eS, ORM, SeDeS, SINCOM, SMS, and SOMOCO 2013. Proceedings: LNCS 8186, 86–92. (2013). http://doi.org/10.1007/978-3-642-41033-8_14Truex, D.P., Baskerville, R., Klein, H.: Growing systems in emergent organizations. Mag. Commun. ACM CACM Homepage Arch. 42(8), 117–123 (1999)Weiberg, S.: Facilitating collaborative decision-making in six steps. International Association of Facilitators Annual Meeting, pp. 14–15 (1999)Delbecq, A.L., VandeVen, A.H.: A group process model for problem identification and program planning. J. Appl. Behav. Sci. 7, 466–492 (1971). https://doi.org/10.1177/002188637100700404Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York, USA (1980

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV