143 research outputs found

    Optimization of quasi-normal eigenvalues for Krein-Nudelman strings

    Full text link
    The paper is devoted to optimization of resonances for Krein strings with total mass and statical moment constraints. The problem is to design for a given αR\alpha \in \R a string that has a resonance on the line \alpha + \i \R with a minimal possible modulus of the imaginary part. We find optimal resonances and strings explicitly.Comment: 9 pages, these results were extracted in a slightly modified form from the earlier e-print arXiv:1103.4117 [math.SP] following an advise of a journal's refere

    A variational approach to strongly damped wave equations

    Full text link
    We discuss a Hilbert space method that allows to prove analytical well-posedness of a class of linear strongly damped wave equations. The main technical tool is a perturbation lemma for sesquilinear forms, which seems to be new. In most common linear cases we can furthermore apply a recent result due to Crouzeix--Haase, thus extending several known results and obtaining optimal analyticity angle.Comment: This is an extended version of an article appeared in \emph{Functional Analysis and Evolution Equations -- The G\"unter Lumer Volume}, edited by H. Amann et al., Birkh\"auser, Basel, 2008. In the latest submission to arXiv only some typos have been fixe

    Trace Formulas in Connection with Scattering Theory for Quasi-Periodic Background

    Full text link
    We investigate trace formulas for Jacobi operators which are trace class perturbations of quasi-periodic finite-gap operators using Krein's spectral shift theory. In particular we establish the conserved quantities for the solutions of the Toda hierarchy in this class.Comment: 7 page

    Weighted H2H^2 Approximation of Transfer Functions

    Get PDF
    The aim of this work is to generalize to the case of weighted L2L^2 spaces some results about L2L^2 approximation by analytic and rational functions which are useful to perform the identification of unknown transfer functions of stable (linear causal time--invariant) systems from incomplete frequency data

    Bandlimited approximations to the truncated Gaussian and applications

    Full text link
    In this paper we extend the theory of optimal approximations of functions f:RRf: \R \to \R in the L1(R)L^1(\R)-metric by entire functions of prescribed exponential type (bandlimited functions). We solve this problem for the truncated and the odd Gaussians using explicit integral representations and fine properties of truncated theta functions obtained via the maximum principle for the heat operator. As applications, we recover most of the previously known examples in the literature and further extend the class of truncated and odd functions for which this extremal problem can be solved, by integration on the free parameter and the use of tempered distribution arguments. This is the counterpart of the work \cite{CLV}, where the case of even functions is treated.Comment: to appear in Const. Appro

    Relative Oscillation Theory, Weighted Zeros of the Wronskian, and the Spectral Shift Function

    Full text link
    We develop an analog of classical oscillation theory for Sturm-Liouville operators which, rather than measuring the spectrum of one single operator, measures the difference between the spectra of two different operators. This is done by replacing zeros of solutions of one operator by weighted zeros of Wronskians of solutions of two different operators. In particular, we show that a Sturm-type comparison theorem still holds in this situation and demonstrate how this can be used to investigate the finiteness of eigenvalues in essential spectral gaps. Furthermore, the connection with Krein's spectral shift function is established.Comment: 26 page

    Geometry and material effects in Casimir physics - Scattering theory

    Full text link
    We give a comprehensive presentation of methods for calculating the Casimir force to arbitrary accuracy, for any number of objects, arbitrary shapes, susceptibility functions, and separations. The technique is applicable to objects immersed in media other than vacuum, to nonzero temperatures, and to spatial arrangements in which one object is enclosed in another. Our method combines each object's classical electromagnetic scattering amplitude with universal translation matrices, which convert between the bases used to calculate scattering for each object, but are otherwise independent of the details of the individual objects. This approach, which combines methods of statistical physics and scattering theory, is well suited to analyze many diverse phenomena. We illustrate its power and versatility by a number of examples, which show how the interplay of geometry and material properties helps to understand and control Casimir forces. We also examine whether electrodynamic Casimir forces can lead to stable levitation. Neglecting permeabilities, we prove that any equilibrium position of objects subject to such forces is unstable if the permittivities of all objects are higher or lower than that of the enveloping medium; the former being the generic case for ordinary materials in vacuum.Comment: 44 pages, 11 figures, to appear in upcoming Lecture Notes in Physics volume in Casimir physic

    A conjecture on Exceptional Orthogonal Polynomials

    Get PDF
    Exceptional orthogonal polynomial systems (X-OPS) arise as eigenfunctions of Sturm-Liouville problems and generalize in this sense the classical families of Hermite, Laguerre and Jacobi. They also generalize the family of CPRS orthogonal polynomials. We formulate the following conjecture: every exceptional orthogonal polynomial system is related to a classical system by a Darboux-Crum transformation. We give a proof of this conjecture for codimension 2 exceptional orthogonal polynomials (X2-OPs). As a by-product of this analysis, we prove a Bochner-type theorem classifying all possible X2-OPS. The classification includes all cases known to date plus some new examples of X2-Laguerre and X2-Jacobi polynomials

    Theory of unitarity bounds and low energy form factors

    Full text link
    We present a general formalism for deriving bounds on the shape parameters of the weak and electromagnetic form factors using as input correlators calculated from perturbative QCD, and exploiting analyticity and unitarity. The values resulting from the symmetries of QCD at low energies or from lattice calculations at special points inside the analyticity domain can beincluded in an exact way. We write down the general solution of the corresponding Meiman problem for an arbitrary number of interior constraints and the integral equations that allow one to include the phase of the form factor along a part of the unitarity cut. A formalism that includes the phase and some information on the modulus along a part of the cut is also given. For illustration we present constraints on the slope and curvature of the K_l3 scalar form factor and discuss our findings in some detail. The techniques are useful for checking the consistency of various inputs and for controlling the parameterizations of the form factors entering precision predictions in flavor physics.Comment: 11 pages latex using EPJ style files, 5 figures; v2 is version accepted by EPJA in Tools section; sentences and figures improve

    A functional model, eigenvalues, and finite singular critical points for indefinite Sturm-Liouville operators

    Full text link
    Eigenvalues in the essential spectrum of a weighted Sturm-Liouville operator are studied under the assumption that the weight function has one turning point. An abstract approach to the problem is given via a functional model for indefinite Sturm-Liouville operators. Algebraic multiplicities of eigenvalues are obtained. Also, operators with finite singular critical points are considered.Comment: 38 pages, Proposition 2.2 and its proof corrected, Remarks 2.5, 3.4, and 3.12 extended, details added in subsections 2.3 and 4.2, section 6 rearranged, typos corrected, references adde
    corecore