1,819 research outputs found

    Combining Planck with Large Scale Structure gives strong neutrino mass constraint

    Get PDF
    We present the strongest current cosmological upper limit on the sum of neutrino masses of < 0.18 (95% confidence). It is obtained by adding observations of the large-scale matter power spectrum from the WiggleZ Dark Energy Survey to observations of the cosmic microwave background data from the Planck surveyor, and measurements of the baryon acoustic oscillation scale. The limit is highly sensitive to the priors and assumptions about the neutrino scenario. We explore scenarios with neutrino masses close to the upper limit (degenerate masses), neutrino masses close to the lower limit where the hierarchy plays a role, and addition of massive or massless sterile species.Comment: 7 pages, 4 figures. Found bug in analysis which is fixed in v2. The resulting constraints on M_nu remain very strong. Additional info added on hierarch

    Simple kinematic models for the environmental interaction of tropical cyclones in vertical wind shear

    Get PDF
    A major impediment to the intensity forecast of tropical cyclones (TCs) is believed to be associated with the interaction of TCs with dry environmental air. However, the conditions under which pronounced TC-environment interaction takes place are not well understood. As a step towards improving our understanding of this problem, we analyze here the flow topology of a TC immersed in an environment of vertical wind shear in an idealized, three-dimensional, convection-permitting numerical experiment. A set of distinct streamlines, the so-called manifolds, can be identified under the assumptions of steady and layer-wise horizontal flow. The manifolds are shown to divide the flow around the TC into distinct regions. &lt;br&gt;&lt;/br&gt; The manifold structure in our numerical experiment is more complex than the well-known manifold structure of a non-divergent point vortex in uniform background flow. In particular, one manifold spirals inwards and ends in a limit cycle, a meso-scale dividing streamline encompassing the eyewall above the layer of strong inflow associated with surface friction and below the outflow layer in the upper troposphere. From the perspective of a steady and layer-wise horizontal flow model, the eyewall is well protected from the intrusion of environmental air. In order for the environmental air to intrude into the inner-core convection, time-dependent and/or vertical motions, which are prevalent in the TC inner-core, are necessary. Air with the highest values of moist-entropy resides within the limit cycle. This "moist envelope" is distorted considerably by the imposed vertical wind shear, and the shape of the moist envelope is closely related to the shape of the limit cycle. In a first approximation, the distribution of high- and low-&lt;i&gt;&amp;theta;&lt;/i&gt;&lt;sub&gt;&lt;i&gt;e&lt;/i&gt;&lt;/sub&gt; air around the TC at low to mid-levels is governed by the stirring of convectively modified air by the steady, horizontal flow. &lt;br&gt;&lt;/br&gt; Motivated by the results from the idealized numerical experiment, an analogue model based on a weakly divergent point vortex in background flow is formulated. The simple kinematic model captures the essence of many salient features of the manifold structure in the numerical experiment. A regime diagram representing realistic values of TC intensity and vertical wind shear can be constructed for the point-vortex model. The results indicate distinct scenarios of environmental interaction depending on the ratio of storm intensity and vertical-shear magnitude. Further implications of the new results derived from the manifold analysis for TCs in the real atmosphere are discussed

    Systematic underreproduction of time is independent of judgment certainty

    Get PDF
    We recently proposed that systematic underreproduction of time is caused by a general judgment bias towards earlier responses, instead of reflecting a genuine misperception of temporal intervals. Here we tested whether this bias can be explained by the uncertainty associated with temporal judgments. We applied transcranial magnetic stimulation (TMS) to inhibit neuronal processes in the right posterior parietal cortex (PPC) and tested its effects on time discrimination and reproduction tasks. The results show increased certainty for discriminative time judgments after PPC inhibition. They suggest that the right PPC plays an inhibitory role for time perception, possibly by mediating the multisensory integration between temporal stimuli and other quantities. Importantly, this increased judgment certainty had no influence on the degree of temporal underreproduction. We conclude that the systematic underreproduction of time is not caused by uncertainty for temporal judgments

    Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear

    Get PDF
    The article of record as published may be located at http://dx.doi.org/10.5194/acp-13-327-2013Recent work has developed a new framework for the impact of vertical wind shear on the intensity evolution of tropical cyclones. A focus of this framework is on the frustration of the tropical cyclone's power machine by shear-induced, persistent downdrafts that flush relatively cool and dry (lower equivalent potential temperature, θe) air into the storm's inflow layer. These previous results have been based on idealised numerical experiments for which we have deliberately chosen a simple set of physical parameterisations. Before efforts are undertaken to test the proposed framework with real atmospheric data, we assess here the robustness of our previous results in a more realistic and representative experimental setup by surveying and diagnosing five additional numerical experiments. The modifications of the experimental setup comprise the values of the exchange coefficients of surface heat and momentum fluxes, the inclusion of experiments with ice microphysics, and the consideration of weaker, but still mature tropical cyclones. In all experiments, the depression of the inflow layer θe values is significant and all tropical cyclones exhibit the same general structural changes when interacting with the imposed vertical wind shear. Tropical cyclones in which strong downdrafts occur more frequently exhibit a more pronounced depression of inflow layer θe outside of the eyewall in our experiments. The magnitude of the θe depression underneath the eyewall early after shear is imposed in our experiments correlates well with the magnitude of the ensuing weakening of the respective tropical cyclone. Based on the evidence presented, it is concluded that the newly proposed framework is a robust description of intensity modification in our suite of experiments

    Mechanical limits of viral capsids

    Full text link
    We study the elastic properties and mechanical stability of viral capsids under external force-loading with computer simulations. Our approach allows the implementation of specific geometries corresponding to specific phages such as ϕ\phi29 and CCMV. We demonstrate how in a combined numerical and experimental approach the elastic parameters can be determined with high precision. The experimentally observed bimodality of elastic spring constants is shown to be of geometrical origin, namely the presence of pentavalent units in the viral shell. A criterion for capsid breakage is defined, which explains well the experimentally observed rupture. From our numerics we find for the dependence of the rupture force on the F\"oppl-von K\'arm\'an (FvK) number a crossover from γ2/3\gamma^{2/3} to γ1/2\gamma^{1/2}. For filled capsids high internal pressures lead to a stronger destabilization of viruses with a buckled ground state than unbuckled ones. Finally, we show how our numerically calculated energy maps can be used to extract information about the strength of protein-protein interactions from rupture experiments.Comment: 6 pages, 9 figure

    Use of Cyclic Simple Shear Testing in Evaluation of the Deformation Potential of Liquefiable Soils

    Get PDF
    In recent years, a significant research effort has been focused on assessing the performance of structures founded on potentially liquefiable materials. While significant progress has been made on predictive tools for cases in which large deformations are likely, the ability to accurately and reliably predict small to moderate lateral deformations (\u3c1m) has proven more elusive. As a result, there is a universal need for high quality, element-level laboratory test data to calibrate and validate constitutive laws and numerical models for predicting the deformation of soil with limited liquefaction potential. To address this increasingly urgent need, a comprehensive cyclic simple shear testing program on liquefiable sands has been undertaken using the UC Berkeley Bi-directional Simple Shear Device. Many of the tests performed have new and innovative aspects that can provide information and insight into the behavior of soils showing limited deformation potential. Descried in this paper are results from a Kα test series, which replicates sloping ground conditions, and a newly developed and innovative “fabric” test series, which examines the influence of previous loading history on soil fabric and behavior