3,080 research outputs found

    First results on radiation damage in PbWO4 crystals exposed to a 20 GeV/c proton beam

    Full text link
    We have exposed seven full length production quality crystals of the electromagnetic calorimeter (ECAL) of the CMS detector to a 20 GeV/c proton beam at the CERN PS accelerator. The exposure was done at fluxes of 10**12 p/cm**2/h and 10**13 p/cm**2/h and integral fluences of 10**12 p/cm**2 and 10**13 p/cm**2 were reached at both rates. The light transmission of the crystals was measured after irradiation and suitable cooling time for induced radioactivity to decrease to a safe level. First results of these measurements are shown. The possible damage mechanisms are discussed and simulations based on one possible model are presented. The implications for long-term operation of CMS are discussed and it is shown that in the whole barrel and at least most of the ECAL endcap hadron damage alone - even if cumulative - should not cause the crystals to fail the CMS specification of an induced absorption coefficient muIND < 1.5 /m during the first 10 years of LHC operation.Comment: 5 pages, to be published in Proc. ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics Applications (Como, Italy, 6 to 10 October 2003

    Wire scanners in low energy accelerators

    Get PDF
    Fast wire scanners are today considered as part of standard instrumentation in high energy synchrotrons. The extension of their use to synchrotrons working at lower energies, where Coulomb scattering can be important and the transverse beam size is large, introduces new complications considering beam heating of the wire, composition of the secondary particle shower and geometrical consideration in the detection set-up. A major problem in treating these effects is that the creation of secondaries in a thin carbon wire by a energetic primary beam is difficult to describe in an analytical way. We are here presenting new results from a full Monte Carlo simulation of this process yielding information on heat deposited in the wire, particle type and energy spectrum of secondaries and angular dependence as a function of primary beam energy. The results are used to derive limits for the use of wire scanners in low energy accelerators.Comment: 20 pages, 8 Postscript figures, uses elsart.cl

    Impact of the LHC beam abort kicker prefire on high luminosity insertion and CMS detector performance

    Get PDF

    Defoliation of Tilia cordata trees associated with Apiognomonia errabunda infection in Finland

    Get PDF
    We investigated the causative agent of a disease outbreak affecting small-leaved limes (Tilia cordata Mill.) and resulting in darkening of the leaf petioles and excessive defoliation during summer 2016 in southern Finland. The fungal species composition of the symptomatic petioles was examined by culture isolation and molecular identification using ITS rDNA sequences, which revealed the most prevalent fungal species present in the petioles as Apiognomonia errabunda (Roberge) Hhn. Based on reviewing curated herbarium specimens deposited at the Universities of Helsinki and Turku, A. errabunda is native and widely distributed in small-leaved limes in Finland, and occasionally infects also other broadleaved trees, including Quercus robur L. and ornamental species of Tilia L. and Fagus L. The ITS sequence analysis conducted during this study revealed minor within-species polymorphisms similar to those observed earlier in the Central European and Russian populations of A. errabunda, and reports the first nucleotide sequences of this species from the Nordic countries.Peer reviewe

    Usefulness of serum HE4 in endometriotic cysts

    Get PDF
    Usefulness of serum HE4 in endometriotic cyst

    Studies of the effect of charged hadrons on lead tungstate crystals

    Full text link
    Scintillating crystals are used for calorimetry in several high-energy physics experiments. For some of them, performance has to be ensured in difficult operating conditions, like a high radiation environment, very large particle fluxes and high collision rates. Results are presented here from a thorough series of measurements concerning mainly the effect of charged hadrons on lead tungstate. It is also shown how these results can be used to predict the effect on crystals due to a given flux of particles.Comment: Submitted to Proceedings Calor 2008 - XIII International Conference on Calorimetry in High Energy Physics, Pavia (Italy) 26-30 May 2008. To be published in Journal of Physics: Conference Series (8 pages, 16 figures

    Radiation Testing of Electronics for the CMS Endcap Muon System

    Get PDF
    The electronics used in the data readout and triggering system for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) particle accelerator at CERN are exposed to high radiation levels. This radiation can cause permanent damage to the electronic circuitry, as well as temporary effects such as data corruption induced by Single Event Upsets. Once the High Luminosity LHC (HL-LHC) accelerator upgrades are completed it will have five times higher instantaneous luminosity than LHC, allowing for detection of rare physics processes, new particles and interactions. Tests have been performed to determine the effects of radiation on the electronic components to be used for the Endcap Muon electronics project currently being designed for installation in the CMS experiment in 2013. During these tests the digital components on the test boards were operating with active data readout while being irradiated with 55 MeV protons. In reactor tests, components were exposed to 30 years equivalent levels of neutron radiation expected at the HL-LHC. The highest total ionizing dose (TID) for the muon system is expected at the inner-most portion of the CMS detector, with 8900 rad over ten years. Our results show that Commercial Off-The-Shelf (COTS) components selected for the new electronics will operate reliably in the CMS radiation environment
    • …
    corecore