28 research outputs found

    The stellar host in star-forming low-mass galaxies: Evidence for two classes

    Full text link
    The morphological evolution of star-forming galaxies provides important clues to understand their physical properties, as well as the triggering and quenching mechanisms of star formation. We aim at connecting morphology and star-formation properties of low-mass galaxies (median stellar mass ∼\sim 108.5^{8.5} M⊙_{\odot}) at low redshift (z<0.36z<0.36). We use a sample of medium-band selected star-forming galaxies from the GOODS-North field. Hα\alpha images for the sample are created combining both spectral energy distribution fits and HST data. Using them, we mask the star forming regions to obtain an unbiased two-dimensional model of the light distribution of the host galaxies. For this purpose we use PHI\texttt{PHI}, a new Bayesian photometric decomposition code. We apply it independently to 7 HST bands assuming a S\'ersic surface brightness model. Star-forming galaxy hosts show low S\'ersic index (with median nn ∼\sim 0.9), as well as small sizes (median ReR_e ∼\sim 1.6 kpc), and negligible change of the parameters with wavelength (except for the axis ratio, which grows with wavelength). Using a clustering algorithm, we find two different classes of star-forming galaxies: A more compact, redder, and high-nn (class A) and a more extended, bluer and lower-nn one (class B). We also find evidence that the first class is more spheroidal-like. In addition, we find that 48% of the analyzed galaxies present negative color gradients (only 5% are positive). The host component of low-mass star-forming galaxies at z<0.36z<0.36 separates into two different classes, similar to what has been found for their higher mass counterparts. The results are consistent with an evolution from class B to class A. Several mechanisms from the literature, like minor and major mergers, and violent disk instability, can explain the physical process behind the likely transition between the classes. [abridged]Comment: Accepted for publication in Astronomy & Astrophysics. 13 pages, 11 figure

    Differences and similarities of stellar populations in LAEs and LBGs at z~3.4-6.8

    Get PDF
    Lyman alpha emitters (LAEs) and Lyman break galaxies (LBGs) represent the most common groups of star-forming galaxies at high z, and the differences between their inherent stellar populations (SPs) are a key factor in understanding early galaxy formation and evolution. We have run a set of SP burst-like models for a sample of 1558 sources at 3.4 < z < 6.8 from the Survey for High-z Absorption Red and Dead Sources (SHARDS) over the GOODS-N field. This work focuses on the differences between the three different observational subfamilies of our sample: LAE–LBGs, no-Ly α LBGs, and pure LAEs. Single and double SP synthetic spectra were used to model the spectral energy distributions, adopting a Bayesian information criterion to analyze under which situations a second SP is required. We find that the sources are well modelled using a single SP in ∼79 per cent of the cases. The best models suggest that pure LAEs are typically young low-mass galaxies (⁠t∼26+41−25 Myr; Mstar∼5.6+12.0−5.5×108 M⊙⁠), undergoing one of their first bursts of star formation. On the other hand, no-Ly α LBGs require older SPs (t ∼ 71 ± 12 Myr), and they are substantially more massive (Mstar ∼ 3.5 ± 1.1 × 109 M⊙). LAE–LBGs appear as the subgroup that more frequently needs the addition of a second SP, representing an old and massive galaxy caught in a strong recent star-forming episode. The relative number of sources found from each subfamily at each z supports an evolutionary scenario from pure LAEs and single SP LAE–LBGs to more massive LBGs. Stellar mass functions are also derived, finding an increase of M* with cosmic time and a possible steepening of the low-mass slope from z ∼ 6 to z ∼ 5 with no significant change to z ∼ 4. Additionally, we have derived the SFR–Mstar relation, finding an SFR∝Mβstar behaviour with negligible evolution from z ∼ 4 to z ∼ 6

    J-PLUS:Uncovering a large population of extreme [OIII] emitters in the local Universe

    Get PDF
    Over the past decades, several studies have discovered a population of galaxies undergoing very strong star formation events, called extreme emission line galaxies (EELGs). In this work, we exploit the capabilities of the Javalambre Photometric Local Universe Survey (J-PLUS), a wide field multifilter survey, with 2000 square degrees observed. We use it to identify EELGs at low redshift by their [OIII]5007 emission line. We intend to provide with a more complete, deep, and less biased sample of local EELGs. We select objects with an excess of flux in the J-PLUS mediumband J0515J0515 filter, which covers the [OIII] line at z

    A simultaneous search for High-z LAEs and LBGs in the SHARDS survey

    Get PDF
    We have undertaken a comprehensive search for both Lyman Alpha Emitters (LAEs) and Lyman Break Galaxies (LBGs) in the SHARDS Survey of the GOODS-N field. SHARDS is a deep imaging survey, made with the 10.4 m Gran Telescopio Canarias (GTC), employing 25 medium band filters in the range from 500 to 941 nm. This is the first time that both LAEs and LBGs are surveyed simultaneously in a systematic way in a large field. We draw a sample of 1558 sources; 528 of them are LAEs. Most of the sources (1434) show rest-frame UV continua. A minority of them (124) are pure LAEs with virtually no continuum detected in SHARDS. We study these sources from z ∼ 3.35 up to z ∼ 6.8, well into the epoch of reionization. Note that surveys done with just one or two narrow band filters lack the possibility to spot the rest-frame UV continuum present in most of our LAEs. We derive redshifts, Star Formation Rates (SFRs), Lyα Equivalent Widths (EWs) and Luminosity Functions (LFs). Grouping within our sample is also studied, finding 92 pairs or groups of galaxies at the same redshift separated by less than 60 comoving kpc. In addition, we relate 87 and 55 UV-selected objects with two known overdensities at z = 4.05 and z = 5.198, respectively. Finally, we show that surveys made with broad band filters are prone to introduce many unwanted sources (∼20% interlopers), which means that previous studies may be overestimating the calculated LFs, specially at the faint end

    Costs and benefits of automation for astronomical facilities

    Full text link
    The Observatorio Astrof\'isico de Javalambre (OAJ{\dag}1) in Spain is a young astronomical facility, conceived and developed from the beginning as a fully automated observatory with the main goal of optimizing the processes in the scientific and general operation of the Observatory. The OAJ has been particularly conceived for carrying out large sky surveys with two unprecedented telescopes of unusually large fields of view (FoV): the JST/T250, a 2.55m telescope of 3deg field of view, and the JAST/T80, an 83cm telescope of 2deg field of view. The most immediate objective of the two telescopes for the next years is carrying out two unique photometric surveys of several thousands square degrees, J-PAS{\dag}2 and J-PLUS{\dag}3, each of them with a wide range of scientific applications, like e.g. large structure cosmology and Dark Energy, galaxy evolution, supernovae, Milky Way structure, exoplanets, among many others. To do that, JST and JAST are equipped with panoramic cameras under development within the J-PAS collaboration, JPCam and T80Cam respectively, which make use of large format (~ 10k x 10k) CCDs covering the entire focal plane. This paper describes in detail, from operations point of view, a comparison between the detailed cost of the global automation of the Observatory and the standard automation cost for astronomical facilities, in reference to the total investment and highlighting all benefits obtained from this approach and difficulties encountered. The paper also describes the engineering development of the overall facilities and infrastructures for the fully automated observatory and a global overview of current status, pinpointing lessons learned in order to boost observatory operations performance, achieving scientific targets, maintaining quality requirements, but also minimizing operation cost and human resources.Comment: Global Observatory Control System GOC

    The miniJPAS survey: A search for extreme emission-line galaxies

    Get PDF
    This is an Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Context. Galaxies with extreme emission lines (EELGs) may play a key role in the evolution of the Universe, as well as in our understanding of the star formation process itself. For this reason an accurate determination of their spatial density and fundamental properties in different epochs of the Universe will constitute a unique perspective towards a comprehensive picture of the interplay between star formation and mass assembly in galaxies. In addition to this, EELGs are also interesting in order to explain the reionization of the Universe, since their interstellar medium (ISM) could be leaking ionizing photons, and thus they could be low z, analogous of extreme galaxies at high z. Aims. This paper presents a method to obtain a census of EELGs over a large area of the sky by detecting galaxies with rest-frame equivalent widths ≥300 Å in the emission lines [O II]λλ3727,3729Å, [O III]λ5007Å, and Hα. For this, we aim to use the J-PAS survey, which will image an area of ≈8000 deg2 with 56 narrow band filters in the optical. As a pilot study, we present a methodology designed to select EELGs on the miniJPAS images, which use the same filter dataset as J-PAS, and thus will be exportable to this larger survey. Methods. We make use of the miniJPAS survey data, conceived as a proof of concept of J-PAS, and covering an area of ≈1 deg2. Objects were detected in the rSDSS images and selected by imposing a condition on the flux in a given narrow-band J-PAS filter with respect to the contiguous ones, which is analogous to requiring an observed equivalent width larger than 300 Å in a certain emission line within the filter bandwidth. The selected sources were then classified as galaxies or quasi-stellar objects (QSOs) after a comparison of their miniJPAS fluxes with those of a spectral database of objects known to present strong emission lines. This comparison also provided a redshift for each source, which turned out to be consistent with the spectroscopic redshifts when available (|Δz/(1 + zspec)| ≤ 0.01). Results. The selected candidates were found to show a compact appearance in the optical images, some of them even being classified as point-like sources according to their stellarity index. After discarding sources classified as QSOs, a total of 17 sources turned out to exhibit EW0 ≥ 300 Å in at least one emission line, thus constituting our final list of EELGs. Our counts are fairly consistent with those of other samples of EELGs in the literature, although there are some differences, which were expected due to biases resulting from different selection criteria. © J. Iglesias-Páramo et al. 2022.This work has been partially funded by projects PID2019-107408GB-C44 from the Spanish PNAYA, co-funded with FEDER, and grand P18-FR-2664, funded by Junta de Andalucía. We acknowledge financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). RGD and LADG acknowledge financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709), and PID2019-109067-GB100. IM acknowledges financial support from the State Agency for Research of the Spanish MCIU through the PID2019-106027GB-C41. JCM acknowledges partial support from the Spanish Ministry of Science, Innovation and Universities (MCIU/AEI/FEDER, UE) through the grant PGC2018-097585-B-C22. SDP is grateful to the Fonds de Recherche du Québec – Nature et Technologies. LSJ acknowledges the support of CNPq (304819/2017-4) and FAPESP (2019/10923-5). JAFO acknowledges the financial support from the Spanish Ministry of Science and Innovation and the European Union – NextGenerationEU through the Recovery and Resilience Facility project ICTS-MRR-2021-03- CEFCA. Funding for the J-PAS Project has been provided by the Governments of España and Aragón though the Fondo de Inversión de Teruel, European FEDER funding and the MINECO and by the Brazilian agencies FINEP, FAPESP, FAPERJ and by the National Observatory of Brazil. Based on observations made with the JST/T250 telescope and PathFinder camera for the miniJPAS project at the Observatorio Astrofísico de Javalambre (OAJ), in Teruel, owned, managed, and operated by the Centro de Estudios de Física del Cosmos de Aragón (CEFCA). We acknowledge the OAJ Data Processing and Archiving Unit (UPAD) for reducing and calibrating the OAJ data used in this work. Funding for OAJ, UPAD, and CEFCA has been provided by the Governments of Spain and Aragón through the Fondo de Inversiones de Teruel; the Aragón Government through the Research Groups E96, E103, and E16_17R; the Spanish Ministry of Science, Innovation and Universities (MCIU/AEI/FEDER, UE) with grant PGC2018-097585-B-C21; the Spanish Ministry of Economy and Competitiveness (MINECO/FEDER, UE) under AYA2015-66211-C2-1-P, AYA2015-66211-C2-2, AYA2012-30789, and ICTS-2009-14; and European FEDER funding (FCDD10-4E-867, FCDD13-4E-2685). This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Funding for SDSS-IV has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-IV web site is https://www.sdss.org/. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 898633.Peer reviewe

    Clinical Characteristics and Prognosis of COPD Patients Hospitalized with SARS-CoV-2

    No full text
    Objective: To describe the characteristics and prognosis of patients with COPD admitted to the hospital due to SARS-CoV-2 infection. Methods: The SEMI-COVID registry is an ongoing retrospective cohort comprising consecutive COVID-19 patients hospitalized in Spain since the beginning of the pandemic in March 2020. Data on demographics, clinical characteristics, comorbidities, laboratory tests, radiology, treatment, and progress are collected. Patients with COPD were selected and compared to patients without COPD. Factors associated with a poor prognosis were analyzed. Results: Of the 10,420 patients included in the SEMI-COVID registry as of May 21, 2020, 746 (7.16%) had a diagnosis of COPD. Patients with COPD are older than those without COPD (77 years vs 68 years) and more frequently male. They have more comorbidities (hypertension, hyperlipidemia, diabetes mellitus, atrial fibrillation, heart failure, ischemic heart disease, peripheral vascular disease, kidney failure) and a higher Charlson Comorbidity Index (2 vs 1, p<0.001). The mortality rate in COPD patients was 38.3% compared to 19.2% in patients without COPD (p<0.001). Male sex, a history of hypertension, heart failure, moderate-severe chronic kidney disease, presence of cerebrovascular disease with sequelae, degenerative neurological disease, dementia, functional dependence, and a higher Charlson Comorbidity Index have been associated with increased mortality due to COVID-19 in COPD patients. Survival was higher among patients with COPD who were treated with hydroxychloroquine (87.1% vs 74.9%, p<0.001) and with macrolides (57.9% vs 50%, p<0.037). Neither prone positioning nor non-invasive mechanical ventilation, high-flow nasal cannula, or invasive mechanical ventilation were associated with a better prognosis. Conclusion: COPD patients admitted to the hospital with SARS-CoV-2 infection have more severe disease and a worse prognosis than non-COPD patients

    Star-forming galaxies at low-redshift in the SHARDS survey

    Get PDF
    International audienceContext. The physical processes driving the evolution of star formation (SF) in galaxies over cosmic time still present many open questions. Recent galaxy surveys allow now to study these processes in great detail at intermediate redshift (0 ≤ z ≤ 0.5). Aims. We build a complete sample of star-forming galaxies and analyze their properties, reaching systems with low stellar masses and low star formation rates (SFRs) at intermediate-to-low redshift. Methods. We use data from the SHARDS multiband survey in the GOODS-North field. Its depth (up to magnitude m 3σ ∼ 26.5) and its spectro-photometric resolution (R ∼ 50) provides us with an ideal dataset to search for emission line galaxies (ELGs). We develop a new algorithm to identify low-redshift (z < 0.36) ELGs by detecting the [OIII]5007 and Hα emission lines simultaneously. We fit the spectral energy distribution (SED) of the selected sample, using a model with two single stellar populations. Results. We find 160 star-forming galaxies for which we derive equivalent widths (EWs) and absolute fluxes of both emission lines. We detect EWs as low as 12 Å, with median values for the sample of ∼35 Å in [OIII]5007 and ∼56 Å in Hα, respectively. Results from the SED fitting show a young stellar population with low median metallicity (36% of the solar value) and extinction (A V ∼ 0.37), with median galaxy stellar mass ∼10 8.5 M. Gas-phase metallicities measured from available spectra are also low. ELGs in our sample present bluer colours in the UVJ plane than the median colour-selected star-forming galaxy in SHARDS. We suggest a new V-J colour criterion to separate ELGs from non-ELGs in blue galaxy samples. In addition, several galaxies present high densities of O-type stars, possibly producing galactic superwinds, which makes them interesting targets for follow-up spectroscopy. Conclusions. We have demonstrated the efficiency of SHARDS in detecting low-mass ELGs (∼2 magnitudes deeper than previous spectroscopic surveys in the same field). The selected sample accounts for 20% of the global galaxy population at this redshift and luminosity, and is characterized by young SF bursts with sub-solar metallicities and low extinction. However, robust fits to the full SEDs can only be obtained including an old stellar population, suggesting the young component is built up by a recent burst of SF in an otherwise old galaxy

    A simultaneous search for High-z LAEs and LBGs in the SHARDS survey

    No full text
    We have undertaken a comprehensive search for both Lyman Alpha Emitters (LAEs) and Lyman Break Galaxies (LBGs) in the SHARDS Survey of the GOODS-N field. SHARDS is a deep imaging survey, made with the 10.4 m Gran Telescopio Canarias (GTC), employing 25 medium band filters in the range from 500 to 941 nm. This is the first time that both LAEs and LBGs are surveyed simultaneously in a systematic way in a large field. We draw a sample of 1558 sources; 528 of them are LAEs. Most of the sources (1434) show rest-frame UV continua. A minority of them (124) are pure LAEs with virtually no continuum detected in SHARDS. We study these sources from z ∼ 3.35 up to z ∼ 6.8, well into the epoch of reionization. Note that surveys done with just one or two narrow band filters lack the possibility to spot the rest-frame UV continuum present in most of our LAEs. We derive redshifts, Star Formation Rates (SFRs), Lyα Equivalent Widths (EWs) and Luminosity Functions (LFs). Grouping within our sample is also studied, finding 92 pairs or groups of galaxies at the same redshift separated by less than 60 comoving kpc. In addition, we relate 87 and 55 UV-selected objects with two known overdensities at z = 4.05 and z = 5.198, respectively. Finally, we show that surveys made with broad band filters are prone to introduce many unwanted sources (∼20% interlopers), which means that previous studies may be overestimating the calculated LFs, specially at the faint end

    J-PLUS: Uncovering a large population of extreme [OIII] emitters in the local Universe

    No full text
    Over the past decades, several studies have discovered a population of galaxies undergoing very strong star formation events, called extreme emission line galaxies (EELGs). In this work, we exploit the capabilities of the Javalambre Photometric Local Universe Survey (J-PLUS), a wide field multifilter survey, with 2000 square degrees observed. We use it to identify EELGs at low redshift by their [OIII]5007 emission line. We intend to provide with a more complete, deep, and less biased sample of local EELGs. We select objects with an excess of flux in the J-PLUS mediumband J0515J0515 filter, which covers the [OIII] line at z<<0.06. We remove contaminants (stars and higher redshift systems) using J-PLUS and WISE infrared data, with SDSS spectra as a benchmark. We perform spectral energy distribution fitting to estimate the properties of the galaxies: line fluxes, equivalent widths (EWs), masses, etc. We identify 466 EELGs at z<0.06{\rm z} < 0.06 with [OIII] EW over 300 \text{\AA} and rr-band mag. below 20, of which 411 were previously unknown. Most show compact morphologies, low stellar masses (log⁡(M⋆/M⊙)∼8.13−0.58+0.61\log (M_{\star}/M_{\odot}) \sim {8.13}^{+0.61}_{-0.58}), low dust extinction (E(B−V)∼0.1−0.1+0.2E(B-V)\sim{0.1}^{+0.2}_{-0.1}), and very young bursts of star formation (3.0−2.0+2.7{3.0}^{+2.7}_{-2.0} Myr). Our method is up to ∼\sim 20 times more efficient detecting EELGs per Mpc3^3 than broadband surveys, and as complete as magnitude-limited spectroscopic surveys (and reaching fainter objects). The sample is not directly biased against strong Hα\alpha emitters, in contrast with broadband surveys. We demonstrate the capability of J-PLUS to identify, following a clear selection process, a large sample of previously unknown EELGs showing unique properties. A fraction of them are likely similar to the first galaxies in the Universe, but at a much lower redshift, which makes them ideal targets for follow-up studies.Comment: 22 pages, 22 figures. Submitted to Astronomy & Astrophysic
    corecore