48 research outputs found

    Role of a Fur homolog in iron metabolism in Nitrosomonas europaea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In response to environmental iron concentrations, many bacteria coordinately regulate transcription of genes involved in iron acquisition via the ferric uptake regulation (Fur) system. The genome of <it>Nitrosomonas europaea</it>, an ammonia-oxidizing bacterium, carries three genes (NE0616, NE0730 and NE1722) encoding proteins belonging to Fur family.</p> <p>Results</p> <p>Of the three <it>N. europaea fur </it>homologs, only the Fur homolog encoded by gene NE0616 complemented the <it>Escherichia coli </it>H1780 <it>fur </it>mutant. A <it>N. europaea fur:kanP </it>mutant strain was created by insertion of kanamycin-resistance cassette in the promoter region of NE0616 <it>fur </it>homolog. The total cellular iron contents of the <it>fur:kanP </it>mutant strain increased by 1.5-fold compared to wild type when grown in Fe-replete media. Relative to the wild type, the <it>fur:kanP </it>mutant exhibited increased sensitivity to iron at or above 500 μM concentrations. Unlike the wild type, the <it>fur:kanP </it>mutant was capable of utilizing iron-bound ferrioxamine without any lag phase and showed over expression of several outer membrane TonB-dependent receptor proteins irrespective of Fe availability.</p> <p>Conclusions</p> <p>Our studies have clearly indicated a role in Fe regulation by the Fur protein encoded by <it>N. europaea </it>NE0616 gene. Additional studies are required to fully delineate role of this <it>fur </it>homolog.</p

    Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments

    Get PDF
    Agricultural land management, such as fertilization, liming, and tillage affects soil properties, including pH, organic matter content, nitrification rates, and the microbial community. Three different study sites were used to identify microorganisms that correlate with agricultural land use and to determine which factors regulate the relative abundance of the microbial signatures of the agricultural land-use. The three sites included in this study are the Broadbalk Experiment at Rothamsted Research, UK, the Everglades Agricultural Area, Florida, USA, and the Kellogg Biological Station, Michigan, USA. The effects of agricultural management on the abundance and diversity of bacteria and archaea were determined using high throughput, barcoded 16S rRNA sequencing. In addition, the relative abundance of these organisms was correlated with soil features. Two groups of microorganisms involved in nitrogen cycle were highly correlated with land use at all three sites. The ammonia oxidizing-archaea, dominated by Ca. Nitrososphaera, were positively correlated with agriculture while a ubiquitous group of soil bacteria closely related to the diazotrophic symbiont, Bradyrhizobium, was negatively correlated with agricultural management. Analysis of successional plots showed that the abundance of ammonia oxidizing-archaea declined and the abundance of bradyrhizobia increased with time away from agriculture. This observation suggests that the effect of agriculture on the relative abundance of these genera is reversible. Soil pH and NH(3) concentrations were positively correlated with archaeal abundance but negatively correlated with the abundance of Bradyrhizobium. The high correlations of Ca. Nitrososphaera and Bradyrhizobium abundances with agricultural management at three long-term experiments with different edaphoclimatic conditions allowed us to suggest these two genera as signature microorganisms for agricultural land use