24,346 research outputs found

    Human Rights Lawyers\u27 Role in Rights NGOs in China: History and Future

    Get PDF

    Pressure-dependent flow behavior of Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) bulk metallic glass

    Get PDF
    An experimental study of the inelastic deformation of bulk metallic glass Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) under multiaxial compression using a confining sleeve technique is presented. In contrast to the catastrophic shear failure (brittle) in uniaxial compression, the metallic glass exhibited large inelastic deformation of more than 10% under confinement, demonstrating the nature of ductile deformation under constrained conditions in spite of the long-range disordered characteristic of the material. It was found that the metallic glass followed a pressure (p) dependent Tresca criterion τ = τ0 + βp, and the coefficient of the pressure dependence β was 0.17. Multiple parallel shear bands oriented at 45° to the loading direction were observed on the surfaces of the deformed specimens and were responsible for the overall inelastic deformation

    Toward a unified interpretation of quark and lepton mixing from flavor and CP symmetries

    Full text link
    We discussed the scenario that a discrete flavor group combined with CP symmetry is broken to Z2×CPZ_2\times CP in both neutrino and charged lepton sectors. All lepton mixing angles and CP violation phases are predicted to depend on two free parameters θl\theta_{l} and θν\theta_{\nu} varying in the range of [0,π)[0, \pi). As an example, we comprehensively study the lepton mixing patterns which can be derived from the flavor group Δ(6n2)\Delta(6n^2) and CP symmetry. Three kinds of phenomenologically viable lepton mixing matrices are obtained up to row and column permutations. We further extend this approach to the quark sector. The precisely measured quark mixing angles and CP invariant can be accommodated for certain values of the free parameters θu\theta_{u} and θd\theta_{d}. A simultaneous description of quark and lepton flavor mixing structures can be achieved from a common flavor group Δ(6n2)\Delta(6n^2) and CP, and accordingly the smallest value of the group index nn is n=7n=7.Comment: 40 pages, 8 figure
    corecore