182 research outputs found

    Activity understanding and unusual event detection in surveillance videos

    Get PDF
    PhDComputer scientists have made ceaseless efforts to replicate cognitive video understanding abilities of human brains onto autonomous vision systems. As video surveillance cameras become ubiquitous, there is a surge in studies on automated activity understanding and unusual event detection in surveillance videos. Nevertheless, video content analysis in public scenes remained a formidable challenge due to intrinsic difficulties such as severe inter-object occlusion in crowded scene and poor quality of recorded surveillance footage. Moreover, it is nontrivial to achieve robust detection of unusual events, which are rare, ambiguous, and easily confused with noise. This thesis proposes solutions for resolving ambiguous visual observations and overcoming unreliability of conventional activity analysis methods by exploiting multi-camera visual context and human feedback. The thesis first demonstrates the importance of learning visual context for establishing reliable reasoning on observed activity in a camera network. In the proposed approach, a new Cross Canonical Correlation Analysis (xCCA) is formulated to discover and quantify time delayed pairwise correlations of regional activities observed within and across multiple camera views. This thesis shows that learning time delayed pairwise activity correlations offers valuable contextual information for (1) spatial and temporal topology inference of a camera network, (2) robust person re-identification, and (3) accurate activity-based video temporal segmentation. Crucially, in contrast to conventional methods, the proposed approach does not rely on either intra-camera or inter-camera object tracking; it can thus be applied to low-quality surveillance videos featuring severe inter-object occlusions. Second, to detect global unusual event across multiple disjoint cameras, this thesis extends visual context learning from pairwise relationship to global time delayed dependency between regional activities. Specifically, a Time Delayed Probabilistic Graphical Model (TD-PGM) is proposed to model the multi-camera activities and their dependencies. Subtle global unusual events are detected and localised using the model as context-incoherent patterns across multiple camera views. In the model, different nodes represent activities in different decomposed re3 gions from different camera views, and the directed links between nodes encoding time delayed dependencies between activities observed within and across camera views. In order to learn optimised time delayed dependencies in a TD-PGM, a novel two-stage structure learning approach is formulated by combining both constraint-based and scored-searching based structure learning methods. Third, to cope with visual context changes over time, this two-stage structure learning approach is extended to permit tractable incremental update of both TD-PGM parameters and its structure. As opposed to most existing studies that assume static model once learned, the proposed incremental learning allows a model to adapt itself to reflect the changes in the current visual context, such as subtle behaviour drift over time or removal/addition of cameras. Importantly, the incremental structure learning is achieved without either exhaustive search in a large graph structure space or storing all past observations in memory, making the proposed solution memory and time efficient. Forth, an active learning approach is presented to incorporate human feedback for on-line unusual event detection. Contrary to most existing unsupervised methods that perform passive mining for unusual events, the proposed approach automatically requests supervision for critical points to resolve ambiguities of interest, leading to more robust detection of subtle unusual events. The active learning strategy is formulated as a stream-based solution, i.e. it makes decision on-the-fly on whether to request label for each unlabelled sample observed in sequence. It selects adaptively two active learning criteria, namely likelihood criterion and uncertainty criterion to achieve (1) discovery of unknown event classes and (2) refinement of classification boundary. The effectiveness of the proposed approaches is validated using videos captured from busy public scenes such as underground stations and traffic intersections

    Aesthetic-Driven Image Enhancement by Adversarial Learning

    Full text link
    We introduce EnhanceGAN, an adversarial learning based model that performs automatic image enhancement. Traditional image enhancement frameworks typically involve training models in a fully-supervised manner, which require expensive annotations in the form of aligned image pairs. In contrast to these approaches, our proposed EnhanceGAN only requires weak supervision (binary labels on image aesthetic quality) and is able to learn enhancement operators for the task of aesthetic-based image enhancement. In particular, we show the effectiveness of a piecewise color enhancement module trained with weak supervision, and extend the proposed EnhanceGAN framework to learning a deep filtering-based aesthetic enhancer. The full differentiability of our image enhancement operators enables the training of EnhanceGAN in an end-to-end manner. We further demonstrate the capability of EnhanceGAN in learning aesthetic-based image cropping without any groundtruth cropping pairs. Our weakly-supervised EnhanceGAN reports competitive quantitative results on aesthetic-based color enhancement as well as automatic image cropping, and a user study confirms that our image enhancement results are on par with or even preferred over professional enhancement

    Learning Social Relation Traits from Face Images

    Full text link
    Social relation defines the association, e.g, warm, friendliness, and dominance, between two or more people. Motivated by psychological studies, we investigate if such fine-grained and high-level relation traits can be characterised and quantified from face images in the wild. To address this challenging problem we propose a deep model that learns a rich face representation to capture gender, expression, head pose, and age-related attributes, and then performs pairwise-face reasoning for relation prediction. To learn from heterogeneous attribute sources, we formulate a new network architecture with a bridging layer to leverage the inherent correspondences among these datasets. It can also cope with missing target attribute labels. Extensive experiments show that our approach is effective for fine-grained social relation learning in images and videos.Comment: To appear in International Conference on Computer Vision (ICCV) 201
    • …
    corecore