954 research outputs found

    Environmental resistance predicts the spread of alien species

    Get PDF
    The unabating rise in the number of species introduced outside of their native range makes predicting the spread of alien species an urgent challenge. Most predictions use models of the ecological niche of a species to identify suitable areas for invasion, but these predictions may have limited accuracy. Here, using the global alien avifauna, we demonstrate an alternative approach for predicting alien spread based on the environmental resistance of the landscape. This approach does not require any information on the ecological niche of the invading species and, instead, uses gradients of biotic similarity among native communities in the invaded region to predict the most likely routes of spread. We show that environmental resistance predicts patterns of spread better than a null model of random dispersal or a model based on climate matching to the native range of each species. Applying this approach to simulate future spread reveals major regional differences in projected invasion risk, shaped by proximity to existing invasion hotspots as well as gradients in environmental resistance. Our results show how environmental resistance may provide a general and complementary approach for predicting invasion risk that can be rapidly deployed even when information on the niche or the identity of potential invaders is unknown

    Space-for-time substitutions in climate change ecology and evolution

    Get PDF
    In an epoch of rapid environmental change, understanding and predicting how biodiversity will respond to a changing climate is an urgent challenge. Since we seldom have sufficient long-term biological data to use the past to anticipate the future, spatial climate–biotic relationships are often used as a proxy for predicting biotic responses to climate change over time. These ‘space-for-time substitutions’ (SFTS) have become near ubiquitous in global change biology, but with different subfields largely developing methods in isolation. We review how climate-focussed SFTS are used in four subfields of ecology and evolution, each focussed on a different type of biotic variable – population phenotypes, population genotypes, species' distributions, and ecological communities. We then examine the similarities and differences between subfields in terms of methods, limitations and opportunities. While SFTS are used for a wide range of applications, two main approaches are applied across the four subfields: spatial in situ gradient methods and transplant experiments. We find that SFTS methods share common limitations relating to (i) the causality of identified spatial climate–biotic relationships and (ii) the transferability of these relationships, i.e. whether climate–biotic relationships observed over space are equivalent to those occurring over time. Moreover, despite widespread application of SFTS in climate change research, key assumptions remain largely untested. We highlight opportunities to enhance the robustness of SFTS by addressing key assumptions and limitations, with a particular emphasis on where approaches could be shared between the four subfields

    Optimisation of Ionic Models to Fit Tissue Action Potentials: Application to 3D Atrial Modelling

    Get PDF
    A 3D model of atrial electrical activity has been developed with spatially heterogeneous electrophysiological properties. The atrial geometry, reconstructed from the male Visible Human dataset, included gross anatomical features such as the central and peripheral sinoatrial node (SAN), intra-atrial connections, pulmonary veins, inferior and superior vena cava, and the coronary sinus. Membrane potentials of myocytes from spontaneously active or electrically paced in vitro rabbit cardiac tissue preparations were recorded using intracellular glass microelectrodes. Action potentials of central and peripheral SAN, right and left atrial, and pulmonary vein myocytes were each fitted using a generic ionic model having three phenomenological ionic current components: one time-dependent inward, one time-dependent outward, and one leakage current. To bridge the gap between the single-cell ionic models and the gross electrical behaviour of the 3D whole-atrial model, a simplified 2D tissue disc with heterogeneous regions was optimised to arrive at parameters for each cell type under electrotonic load. Parameters were then incorporated into the 3D atrial model, which as a result exhibited a spontaneously active SAN able to rhythmically excite the atria. The tissue-based optimisation of ionic models and the modelling process outlined are generic and applicable to image-based computer reconstruction and simulation of excitable tissue

    The evolution of nutritional care in children and young people with acute lymphoblastic leukaemia: a narrative review

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: Data sharing is not applicable to this article as no new data were created or analysed in this study.Background: Acute lymphoblastic leukaemia (ALL) is the most common paediatric malignancy in the world. Advances in treatment protocols have resulted in survival rates of >80% in most high‐income countries (HIC); however, children and young people (CYP) with ALL continue to face significant nutrition‐related challenges during treatment. Methods: This narrative review outlines the changing landscape of treatment and survivorship for CYP with ALL and the advances in nutrition knowledge that call for changes to clinical nutrition practice. Results: The incidence of ALL has remained stable in HIC; however, there have been significant advances in survival over the past 30 years. Overweight and obesity are increasingly prevalent in CYP with ALL at diagnosis, during treatment and in survivorship. Coupled with poor diet quality, high‐energy and saturated fat intakes, altered eating behaviours and inactivity, this necessitates the need for a shift in nutrition intervention. Undernutrition remains a concern for CYP with high‐risk treatment protocols where oral or enteral nutrition support remains a cornerstone of maintaining nutrition status. Conclusions: With improved treatment protocols and high survival rates, a shift to focusing on diet quality, prevention of excessive weight gain and obesity during treatment and survivorship is necessary

    Dynamic shading systems: A review of design parameters, platforms and evaluation strategies

    Get PDF
    The advancements in software and hardware technologies provide opportunities for solar shading systems to function dynamically within their context. This development has helped dynamic shading systems respond to variable environmental parameters such as sun angles and solar insolation. However, the technical understanding of system design, mechanism and controlling methods presents a challenge for architects and designers. Therefore, this study aims to review the current applications and trends of dynamic shading systems to clarify the potentials and limitations in enhancing system performance based on integrated design objectives. This study assessed several systems on the basis of a critical review to identify different models, applications and methodologies. This study is divided into two main sections: (i) design elements and platforms that engage with specific methods in creating a dynamic shading system and (ii) evaluation strategies to examine system performance. The systems were investigated based on the multiplicity and integration of the parameters involved through various components, such as architectural, mechanical, operational and automation components. The review analysed various studies on the following two bases: (1) geometric-based analysis, which distinguishes between simple and complex shading models, and (2) performance-based analysis, which assesses the shading systems based on two groups of methodologies, namely, theoretical and experimental. The outcome of the review reflects a clear classification of shading models and a comprehensive analysis of their performance. This study generally provides a systematic framework for architects based on thorough research and investigation. Finally, the study introduced several findings and recommendations to improve the performance of dynamic shading systems

    The role of infarct transmural extent in infarct extension: a computational study

    Get PDF
    Infarct extension, a process involving progressive extension of the infarct zone (IZ) into the normally perfused border zone (BZ), leads to continuous degradation of the myocardial function and adverse remodelling. Despite carrying a high risk of mortality, detailed understanding of the mechanisms leading to BZ hypoxia and infarct extension remains unexplored. In the present study, we developed a 3D truncated ellipsoidal left ventricular model incorporating realistic electromechanical properties and fibre orientation to examine the mechanical interaction among the remote, infarct and BZs in the presence of varying infarct transmural extent (TME). Localized highly abnormal systolic fibre stress was observed at the BZ, owing to the simultaneous presence of moderately increased stiffness and fibre strain at this region, caused by the mechanical tethering effect imposed by the overstretched IZ. Our simulations also demonstrated the greatest tethering effect and stress in BZ regions with fibre direction tangential to the BZ–remote zone boundary. This can be explained by the lower stiffness in the cross-fibre direction, which gave rise to a greater stretching of the IZ in this direction. The average fibre strain of the IZ, as well as the maximum stress in the sub-endocardial layer, increased steeply from 10% to 50% infarct TME, and slower thereafter. Based on our stress–strain loop analysis, we found impairment in the myocardial energy efficiency and elevated energy expenditure with increasing infarct TME, which we believe to place the BZ at further risk of hypoxia

    The influence of the accessory genome on bacterial pathogen evolution

    Get PDF
    Bacterial pathogens exhibit significant variation in their genomic content of virulence factors. This reflects the abundance of strategies pathogens evolved to infect host organisms by suppressing host immunity. Molecular arms-races have been a strong driving force for the evolution of pathogenicity, with pathogens often encoding overlapping or redundant functions, such as type III protein secretion effectors and hosts encoding ever more sophisticated immune systems. The pathogens’ frequent exposure to other microbes, either in their host or in the environment, provides opportunities for the acquisition or interchange of mobile genetic elements. These DNA elements accessorise the core genome and can play major roles in shaping genome structure and altering the complement of virulence factors. Here, we review the different mobile genetic elements focusing on the more recent discoveries and highlighting their role in shaping bacterial pathogen evolution

    Neurotrophin gene augmentation by electrotransfer to improve cochlear implant hearing outcomes

    Get PDF
    This Review outlines the development of DNA-based therapeutics for treatment of hearing loss, and in particular, considers the potential to utilize the properties of recombinant neurotrophins to improve cochlear auditory (spiral ganglion) neuron survival and repair. This potential to reduce spiral ganglion neuron death and indeed re-grow the auditory nerve fibres has been the subject of considerable pre-clinical evaluation over decades with the view of improving the neural interface with cochlear implants. This provides the context for discussion about the development of a novel means of using cochlear implant electrode arrays for gene electrotransfer. Mesenchymal cells which line the cochlear perilymphatic compartment can be selectively transfected with (naked) plasmid DNA using array - based gene electrotransfer, termed ‘close-field electroporation’. This technology is able to drive expression of brain derived neurotrophic factor (BDNF) in the deafened guinea pig model, causing re-growth of the spiral ganglion peripheral neurites towards the mesenchymla cells, and hence into close proximity with cochlear implant electrodes within scala tympani. This was associated with functional enhancement of the cochlear implant neural interface (lower neural recruitment thresholds and expanded dynamic range, measured using electrically - evoked auditory brainstem responses). The basis for the efficiency of close-field electroporation arises from the compression of the electric field in proximity to the ganged cochlear implant electrodes. The regions close to the array with highest field strength corresponded closely to the distribution of bioreporter cells (adherent human embryonic kidney (HEK293)) expressing green fluorescent reporter protein (GFP) following gene electrotransfer. The optimization of the gene electrotransfer parameters using this cell-based model correlated closely with in vitro and in vivo cochlear gene delivery outcomes. The migration of the cochlear implant electrode array-based gene electrotransfer platform towards a clinical trial for neurotrophin-based enhancement of cochlear implants is supported by availability of a novel regulatory compliant mini-plasmid DNA backbone (pFAR4; plasmid Free of Antibiotic Resistance v.4) which could be used to package a ‘humanized’ neurotrophin expression cassette. A reporter cassette packaged into pFAR4 produced prominent GFP expression in the guinea pig basal turn perilymphatic scalae. More broadly, close-field gene electrotransfer may lend itself to a spectrum of potential DNA therapeutics applications benefitting from titratable, localised, delivery of naked DNA, for gene augmentation, targeted gene regulation, or gene substitution strategies

    Equity in healthcare: status, barriers, and challenges

    Get PDF
    Global health provides a challenge for primary care and general practice which will become increasingly important in the future as the prevalence of multimorbidity increases. There is increasing likelihood of survival from acute illnesses and increase an in the elderly population. This literature review focuses on the health inequities, the role of family medicine and the factors that are essential in overcoming these inequalities. Health disparities refer to gaps in the quality of health and delivery of health care across racial, ethnic, gender and socioeconomic groups. The health disparities vary among different countries and the factors that lead to these disparities differ across the world. Family medicine plays a crucial role in bridging this gap and is an essential backbone of the society in developing nations as well as the wealthier nations in providing equity in health care to all people. There are many factors leading to inequity in health care. Family medicine should be recognized as a specialty across the world, as family medicine with its person centered care can bring about a global change in health care. This issue has to be taken up more seriously by the institutions like the WHO, UN and also individual governments along with the political parties to create uniformity in health care. In the current setting of the global economic and financial crisis, a truly global solution is needed. The WHO has come up with various strategies to solve the issue of financial crises and ensuring equity in health globally. This will ensure equal health care to all people especially the underprivileged in developing countries who do not have access to better healthcare due to lack of resources. This factor is a major contributor to the premature death of individuals at all stages of life from new born to the elderly and includes infant mortality and mortality due to chronic diseases. This is important in creating uniformity in health care across the world but has to be considered at a global level to have an impact