5,950 research outputs found

    Radiative transitions of high energy neutrino in dense matter

    Full text link
    The quantum theory of the ``spin light'' (electromagnetic radiation emitted by a massive neutrino propagating in dense matter due to the weak interaction of a neutrino with background fermions) is developed. In contrast to the Cherenkov radiation, this effect does not disappear even if the medium refractive index is assumed to be equal to unity. The formulas for the transition rate and the total radiation power are obtained. It is found out that radiation of photons is possible only when the sign of the particle helicity is opposite to that of the effective potential describing the interaction of a neutrino (antineutrino) with the background medium. Due to the radiative self-polarization the radiating particle can change its helicity. As a result, the active left-handed polarized neutrino (right-handed polarized antineutrino) converting to the state with inverse helicity can become practically ``sterile''. Since the sign of the effective potential depends on the neutrino flavor and the matter structure, the ``spin light'' can change a ratio of active neutrinos of different flavors. In the ultra relativistic approach, the radiated photons averaged energy is equal to one third of the initial neutrino energy, and two thirds of the energy are carried out by the final ``sterile'' neutrinos. This fact can be important for the understanding of the ``dark matter'' formation mechanism on the early stages of evolution of the Universe.Comment: 7 pages, latex, one misprint in eq. 12 correcte

    Mergers and binary systems of SMBH in the contexts of nuclear activity and galaxy evolution

    Full text link
    The dynamic evolution of binary systems of supermassive black holes (SMBH) may be a key factor affecting a large fraction of the observed properties of active galactic nuclei (AGN) and galaxy evolution. Different classes of AGN can be related in general to four evolutionary stages in a binary SMBH: 1) early merger stage; 2) wide pair stage; 3) close pair stage; and 4) pre-coalescence stage. This scheme can explain a variety of properties of AGN: radio and optical luminosity differences between different classes of AGN, long-term and short-term variability, quasi-periodic nuclear flares, recurrent formation of relativistic outflows in AGN and their apparent morphology and kinematics.Comment: 2 pages, no figures; to be published in Proceedings of the Conference "Growing Black Holes", Garching, Germany June 21-25, 2004, edited by A.Merloni, S.Nayakshin, R.Sunyaev (Springer-Verlag series of ESO Astrophysic

    Physical properties of the jet in 0836+710 revealed by its transversal structure

    Full text link
    Studying the internal structure of extragalactic jets is crucial for understanding their physics. The Japanese-led space VLBI project VSOP has presented an opportunity for such studies, by reaching baseline lengths of up to 36,000 km and resolving structures down to an angular size of ≈0.3\approx 0.3 mas at 5 GHz. VSOP observations of the jet in 0836+710 at 1.6 and 5 GHz have enabled tracing of the radial structure of the flow on scales from 2 mas to 200 mas along the jet and determination of the wavelengths of individual oscillatory modes responsible for the formation of the structure observed. We apply linear stability analysis to identify the oscillatory modes with modes of Kelvin-Helmholtz instability that match the wavelengths of the structures observed. We find that the jet structure in 0836+710 can be reproduced by the helical surface mode and a combination of the helical and elliptic body modes of Kelvin-Helmholtz instability. Our results indicate that the jet is substantially stratified and different modes of the instability grow inside the jet at different distances to the jet axis. The helical surface mode can be driven externally, and we discuss the implications of the driving frequency on the physics of the active nucleus in 0836+710.Comment: Accepted for publication in Astronomy & Astrophysics Letter
    • 

    corecore