965 research outputs found

    Deep Learning Face Attributes in the Wild

    Full text link
    Predicting face attributes in the wild is challenging due to complex face variations. We propose a novel deep learning framework for attribute prediction in the wild. It cascades two CNNs, LNet and ANet, which are fine-tuned jointly with attribute tags, but pre-trained differently. LNet is pre-trained by massive general object categories for face localization, while ANet is pre-trained by massive face identities for attribute prediction. This framework not only outperforms the state-of-the-art with a large margin, but also reveals valuable facts on learning face representation. (1) It shows how the performances of face localization (LNet) and attribute prediction (ANet) can be improved by different pre-training strategies. (2) It reveals that although the filters of LNet are fine-tuned only with image-level attribute tags, their response maps over entire images have strong indication of face locations. This fact enables training LNet for face localization with only image-level annotations, but without face bounding boxes or landmarks, which are required by all attribute recognition works. (3) It also demonstrates that the high-level hidden neurons of ANet automatically discover semantic concepts after pre-training with massive face identities, and such concepts are significantly enriched after fine-tuning with attribute tags. Each attribute can be well explained with a sparse linear combination of these concepts.Comment: To appear in International Conference on Computer Vision (ICCV) 201

    Distributed Estimation and Inference with Statistical Guarantees

    Full text link
    This paper studies hypothesis testing and parameter estimation in the context of the divide and conquer algorithm. In a unified likelihood based framework, we propose new test statistics and point estimators obtained by aggregating various statistics from kk subsamples of size n/kn/k, where nn is the sample size. In both low dimensional and high dimensional settings, we address the important question of how to choose kk as nn grows large, providing a theoretical upper bound on kk such that the information loss due to the divide and conquer algorithm is negligible. In other words, the resulting estimators have the same inferential efficiencies and estimation rates as a practically infeasible oracle with access to the full sample. Thorough numerical results are provided to back up the theory

    Relighting4D: Neural Relightable Human from Videos

    Full text link
    Human relighting is a highly desirable yet challenging task. Existing works either require expensive one-light-at-a-time (OLAT) captured data using light stage or cannot freely change the viewpoints of the rendered body. In this work, we propose a principled framework, Relighting4D, that enables free-viewpoints relighting from only human videos under unknown illuminations. Our key insight is that the space-time varying geometry and reflectance of the human body can be decomposed as a set of neural fields of normal, occlusion, diffuse, and specular maps. These neural fields are further integrated into reflectance-aware physically based rendering, where each vertex in the neural field absorbs and reflects the light from the environment. The whole framework can be learned from videos in a self-supervised manner, with physically informed priors designed for regularization. Extensive experiments on both real and synthetic datasets demonstrate that our framework is capable of relighting dynamic human actors with free-viewpoints.Comment: ECCV 2022; Project Page https://frozenburning.github.io/projects/relighting4d Codes are available at https://github.com/FrozenBurning/Relighting4

    Semantic Image Segmentation via Deep Parsing Network

    Full text link
    This paper addresses semantic image segmentation by incorporating rich information into Markov Random Field (MRF), including high-order relations and mixture of label contexts. Unlike previous works that optimized MRFs using iterative algorithm, we solve MRF by proposing a Convolutional Neural Network (CNN), namely Deep Parsing Network (DPN), which enables deterministic end-to-end computation in a single forward pass. Specifically, DPN extends a contemporary CNN architecture to model unary terms and additional layers are carefully devised to approximate the mean field algorithm (MF) for pairwise terms. It has several appealing properties. First, different from the recent works that combined CNN and MRF, where many iterations of MF were required for each training image during back-propagation, DPN is able to achieve high performance by approximating one iteration of MF. Second, DPN represents various types of pairwise terms, making many existing works as its special cases. Third, DPN makes MF easier to be parallelized and speeded up in Graphical Processing Unit (GPU). DPN is thoroughly evaluated on the PASCAL VOC 2012 dataset, where a single DPN model yields a new state-of-the-art segmentation accuracy.Comment: To appear in International Conference on Computer Vision (ICCV) 201
    corecore