275,691 research outputs found

    Method of increasing minority carrier lifetime in silicon web or the like

    Get PDF
    A silicon dendrite is grown as a ribbon forming two silicon crystal layers which are separated by an interface layer which contains a large number of defects. Significant increase of minority carrier lifetime with homogeneous distribution at the outer surfaces of the two silicon crystal layers is achieved by processing the web in an atmosphere of a selected gas, e.g., oxygen, nitrogen or an inert gas, for about 30 minutes to several hours at a temperature preferably on the order of 900 to 1200 C

    An experimental study of the concatenated Reed-Solomon/Viterbi channel coding system performance and its impact on space communications

    Get PDF
    The need for efficient space communication at very low bit error probabilities to the specification and implementation of a concatenated coding system using an interleaved Reed-Solomon code as the outer code and a Viterbi-decoded convolutional code as the inner code. Experimental results of this channel coding system are presented under an emulated S-band uplink and X-band downlink two-way space communication channel, where both uplink and downlink have strong carrier power. This work was performed under the NASA End-to-End Data Systems program at JPL. Test results verify that at a bit error probability of 10 to the -6 power or less, this concatenated coding system does provide a coding gain of 2.5 dB or more over the Viterbi-decoded convolutional-only coding system. These tests also show that a desirable interleaving depth for the Reed-Solomon outer code is 8 or more. The impact of this "virtually" error-free space communication link on the transmission of images is discussed and examples of simulation results are given

    The structure of the magnetic reconnection exhaust boundary

    Full text link
    The structure of shocks that form at the exhaust boundaries during collisionless reconnection of anti-parallel fields is studied using particle-in-cell (PIC) simulations and modeling based on the anisotropic magnetohydrodynamic equations. Large-scale PIC simulations of reconnection and companion Riemann simulations of shock development demonstrate that the pressure anisotropy produced by counterstreaming ions within the exhaust prevents the development of classical Petschek switch-off-slow shocks (SSS). The shock structure that does develop is controlled by the firehose stability parameter epsilon=1-mu_0(P_parallel-P_perpendicular)/ B^2 through its influence on the speed order of the intermediate and slow waves. Here P_parallel and P_perpendicular are the pressure parallel and perpendicular to the local magnetic field. The exhaust boundary is made up of a series of two shocks and a rotational wave. The first shock takes epsilon from unity upstream to a plateau of 0.25 downstream. The condition epsilon =0.25 is special because at this value the speeds of nonlinear slow and intermediate waves are degenerate. The second slow shock leaves epsilon=0.25 unchanged but further reduces the amplitude of the reconnecting magnetic field. Finally, in the core of the exhaust epsilon drops further and the transition is completed by a rotation of the reconnecting field into the out-of-plane direction. The acceleration of the exhaust takes place across the two slow shocks but not during the final rotation. The result is that the outflow speed falls below that expected from the Walen condition based on the asymptotic magnetic field. A simple analytic expression is given for the critical value of epsilon within the exhaust below which SSSs no longer bound the reconnection outflow.Comment: 13 pages, 5 figure
    • …