145 research outputs found

    Robust Visual Tracking Revisited: From Correlation Filter to Template Matching

    Full text link
    In this paper, we propose a novel matching based tracker by investigating the relationship between template matching and the recent popular correlation filter based trackers (CFTs). Compared to the correlation operation in CFTs, a sophisticated similarity metric termed "mutual buddies similarity" (MBS) is proposed to exploit the relationship of multiple reciprocal nearest neighbors for target matching. By doing so, our tracker obtains powerful discriminative ability on distinguishing target and background as demonstrated by both empirical and theoretical analyses. Besides, instead of utilizing single template with the improper updating scheme in CFTs, we design a novel online template updating strategy named "memory filtering" (MF), which aims to select a certain amount of representative and reliable tracking results in history to construct the current stable and expressive template set. This scheme is beneficial for the proposed tracker to comprehensively "understand" the target appearance variations, "recall" some stable results. Both qualitative and quantitative evaluations on two benchmarks suggest that the proposed tracking method performs favorably against some recently developed CFTs and other competitive trackers.Comment: has been published on IEEE TI

    Regularized Regression Problem in hyper-RKHS for Learning Kernels

    Full text link
    This paper generalizes the two-stage kernel learning framework, illustrates its utility for kernel learning and out-of-sample extensions, and proves {asymptotic} convergence results for the introduced kernel learning model. Algorithmically, we extend target alignment by hyper-kernels in the two-stage kernel learning framework. The associated kernel learning task is formulated as a regression problem in a hyper-reproducing kernel Hilbert space (hyper-RKHS), i.e., learning on the space of kernels itself. To solve this problem, we present two regression models with bivariate forms in this space, including kernel ridge regression (KRR) and support vector regression (SVR) in the hyper-RKHS. By doing so, it provides significant model flexibility for kernel learning with outstanding performance in real-world applications. Specifically, our kernel learning framework is general, that is, the learned underlying kernel can be positive definite or indefinite, which adapts to various requirements in kernel learning. Theoretically, we study the convergence behavior of these learning algorithms in the hyper-RKHS and derive the learning rates. Different from the traditional approximation analysis in RKHS, our analyses need to consider the non-trivial independence of pairwise samples and the characterisation of hyper-RKHS. To the best of our knowledge, this is the first work in learning theory to study the approximation performance of regularized regression problem in hyper-RKHS.Comment: 25 pages, 3 figure

    Relationship between the late-age hydration and strength development of cement-slag mortars

    Get PDF
    120-127The relationship between the late-age hydration and strength development of cement-slag mortars have been investigated by measuring the compressive strengths and the non-evaporable water contents. The results show that the late-age strength increases with increasing the slag content. Increasing the fineness of slag makes greater contribution to the late-age strength improvement at high water to binder ratio than that at low water to binder ratio. At lower water to binder ratio, the increasing rates of compressive strength and non-evaporable water content are smaller. There is a linear relationship between the increasing rate of compressive strength and the increasing rate of non-evaporable water contents. The slope is almost the same for all the samples at constant water to binder ratio and decreases with decreasing the water to binder ratio

    Random Fourier Features for Asymmetric Kernels

    Full text link
    The random Fourier features (RFFs) method is a powerful and popular technique in kernel approximation for scalability of kernel methods. The theoretical foundation of RFFs is based on the Bochner theorem that relates symmetric, positive definite (PD) functions to probability measures. This condition naturally excludes asymmetric functions with a wide range applications in practice, e.g., directed graphs, conditional probability, and asymmetric kernels. Nevertheless, understanding asymmetric functions (kernels) and its scalability via RFFs is unclear both theoretically and empirically. In this paper, we introduce a complex measure with the real and imaginary parts corresponding to four finite positive measures, which expands the application scope of the Bochner theorem. By doing so, this framework allows for handling classical symmetric, PD kernels via one positive measure; symmetric, non-positive definite kernels via signed measures; and asymmetric kernels via complex measures, thereby unifying them into a general framework by RFFs, named AsK-RFFs. Such approximation scheme via complex measures enjoys theoretical guarantees in the perspective of the uniform convergence. In algorithmic implementation, to speed up the kernel approximation process, which is expensive due to the calculation of total mass, we employ a subset-based fast estimation method that optimizes total masses on a sub-training set, which enjoys computational efficiency in high dimensions. Our AsK-RFFs method is empirically validated on several typical large-scale datasets and achieves promising kernel approximation performance, which demonstrate the effectiveness of AsK-RFFs

    End-to-end Kernel Learning via Generative Random Fourier Features

    Full text link
    Random Fourier features (RFFs) provide a promising way for kernel learning in a spectral case. Current RFFs-based kernel learning methods usually work in a two-stage way. In the first-stage process, learning the optimal feature map is often formulated as a target alignment problem, which aims to align the learned kernel with the pre-defined target kernel (usually the ideal kernel). In the second-stage process, a linear learner is conducted with respect to the mapped random features. Nevertheless, the pre-defined kernel in target alignment is not necessarily optimal for the generalization of the linear learner. Instead, in this paper, we consider a one-stage process that incorporates the kernel learning and linear learner into a unifying framework. To be specific, a generative network via RFFs is devised to implicitly learn the kernel, followed by a linear classifier parameterized as a full-connected layer. Then the generative network and the classifier are jointly trained by solving the empirical risk minimization (ERM) problem to reach a one-stage solution. This end-to-end scheme naturally allows deeper features, in correspondence to a multi-layer structure, and shows superior generalization performance over the classical two-stage, RFFs-based methods in real-world classification tasks. Moreover, inspired by the randomized resampling mechanism of the proposed method, its enhanced adversarial robustness is investigated and experimentally verified.Comment: update revised versio
    corecore