172 research outputs found

    Weibull Racing Survival Analysis for Competing Events and a Study of Loan Payoff and Default

    Full text link
    We propose Bayesian nonparametric Weibull delegate racing (WDR) to explicitly model surviving under competing events and to interpret how the covariates accelerate or decelerate the event times. WDR explains non-monotonic covariate effects by racing a potentially infinite number of sub-events, relaxing the ubiquitous proportional-hazards assumption which may be too restrictive. WDR can handle different types of censoring and missing event times or types. For inference, we develop a Gibbs-sampler-based MCMC algorithm along with a maximum a posteriori estimation for big data applications. We use synthetic data analysis to demonstrate the flexibility and parsimonious nonlinearity of WDR. We also use a data set of time to loan payoff and default from Prosper.com to showcase the interpretability.Comment: 40 pages, 7 figures, 14 table

    To Healthier Ethereum: A Comprehensive and Iterative Smart Contract Weakness Enumeration

    Full text link
    With the increasing popularity of cryptocurrencies and blockchain technology, smart contracts have become a prominent feature in developing decentralized applications. However, these smart contracts are susceptible to vulnerabilities that hackers can exploit, resulting in significant financial losses. In response to this growing concern, various initiatives have emerged. Notably, the SWC vulnerability list played an important role in raising awareness and understanding of smart contract weaknesses. However, the SWC list lacks maintenance and has not been updated with new vulnerabilities since 2020. To address this gap, this paper introduces the Smart Contract Weakness Enumeration (SWE), a comprehensive and practical vulnerability list up until 2023. We collect 273 vulnerability descriptions from 86 top conference papers and journal papers, employing open card sorting techniques to deduplicate and categorize these descriptions. This process results in the identification of 40 common contract weaknesses, which are further classified into 20 sub-research fields through thorough discussion and analysis. SWE provides a systematic and comprehensive list of smart contract vulnerabilities, covering existing and emerging vulnerabilities in the last few years. Moreover, SWE is a scalable, continuously iterative program. We propose two update mechanisms for the maintenance of SWE. Regular updates involve the inclusion of new vulnerabilities from future top papers, while irregular updates enable individuals to report new weaknesses for review and potential addition to SWE

    Self-Supervised Scene Dynamic Recovery from Rolling Shutter Images and Events

    Full text link
    Scene Dynamic Recovery (SDR) by inverting distorted Rolling Shutter (RS) images to an undistorted high frame-rate Global Shutter (GS) video is a severely ill-posed problem, particularly when prior knowledge about camera/object motions is unavailable. Commonly used artificial assumptions on motion linearity and data-specific characteristics, regarding the temporal dynamics information embedded in the RS scanlines, are prone to producing sub-optimal solutions in real-world scenarios. To address this challenge, we propose an event-based RS2GS framework within a self-supervised learning paradigm that leverages the extremely high temporal resolution of event cameras to provide accurate inter/intra-frame information. % In this paper, we propose to leverage the event camera to provide inter/intra-frame information as the emitted events have an extremely high temporal resolution and learn an event-based RS2GS network within a self-supervised learning framework, where real-world events and RS images can be exploited to alleviate the performance degradation caused by the domain gap between the synthesized and real data. Specifically, an Event-based Inter/intra-frame Compensator (E-IC) is proposed to predict the per-pixel dynamic between arbitrary time intervals, including the temporal transition and spatial translation. Exploring connections in terms of RS-RS, RS-GS, and GS-RS, we explicitly formulate mutual constraints with the proposed E-IC, resulting in supervisions without ground-truth GS images. Extensive evaluations over synthetic and real datasets demonstrate that the proposed method achieves state-of-the-art and shows remarkable performance for event-based RS2GS inversion in real-world scenarios. The dataset and code are available at https://w3un.github.io/selfunroll/
    • ÔÇŽ