3,466 research outputs found

    Soft-gluon resolution scale in QCD evolution equations

    Full text link
    QCD evolution equations can be recast in terms of parton branching processes. We present a new numerical solution of the equations. We show that this parton-branching solution can be applied to analyze infrared contributions to evolution, order-by-order in the strong coupling αs\alpha_s, as a function of the soft-gluon resolution scale parameter. We examine the cases of transverse-momentum ordering and angular ordering. We illustrate that this approach can be used to treat distributions which depend both on longitudinal and on transverse momenta.Comment: Latex, 8 pages, 4 figure

    Collinear and TMD Quark and Gluon Densities from Parton Branching Solution of QCD Evolution Equations

    Full text link
    We study parton-branching solutions of QCD evolution equations and present a method to construct both collinear and transverse momentum dependent (TMD) parton densities from this approach. We work with next-to-leading-order (NLO) accuracy in the strong coupling. Using the unitarity picture in terms of resolvable and non-resolvable branchings, we analyze the role of the soft-gluon resolution scale in the evolution equations. For longitudinal momentum distributions, we find agreement of our numerical calculations with existing evolution programs at the level of better than 1 percent over a range of five orders of magnitude both in evolution scale and in longitudinal momentum fraction. We make predictions for the evolution of transverse momentum distributions. We perform fits to the high-precision deep inelastic scattering (DIS) structure function measurements, and we present a set of NLO TMD distributions based on the parton branching approach.Comment: 27 pages, 8 figure

    Ultrashort pulse characterization by spectral shearing interferometry with spatially chirped ancillae

    Full text link
    We report a new version of spectral phase interferometry for direct electric field reconstruction (SPIDER), which enables consistency checking through the simultaneous acquisition of multiple shears and offers a simple and precise calibration method. By mixing the test pulse with two spatially chirped ancilla fields we generate a single-shot interferogram which contains multiple shears, the spectral amplitude of the test pulse, and the reference phase, which is accurate for broadband pulses. All calibration parameters - shear, upconversion-frequency and reference phase position - can be accurately obtained from a single calibration trace.Comment: 11 pages, 7 figure


    Get PDF
    ESCUELA TALLER DE MODERNIZACIÓN DE ARCHIVOS Y BIBLIOTECAS DEL AYUNTAMIENTO DE VALSEQUILLOCopia digital. Madrid : Ministerio de Educación, Cultura y Deporte. Subdirección General de Coordinación Bibliotecaria, 201

    Search for new neutral Higgs bosons through the H → ZA→ ℓ+ℓ−b b ¯ process in pp collisions at √s = 13 TeV

    Get PDF
    This paper reports on a search for an extension to the scalar sector of the standard model, where a new CP-even (odd) boson decays to a Z boson and a lighter CP-odd (even) boson, and the latter further decays to a b quark pair. The Z boson is reconstructed via its decays to electron or muon pairs. The analysed data were recorded in proton-proton collisions at a center-of-mass energy s = 13 TeV, collected by the CMS experiment at the LHC during 2016, corresponding to an integrated luminosity of 35.9 fb−1. Data and predictions from the standard model are in agreement within the uncertainties. Upper limits at 95% confidence level are set on the production cross section times branching fraction, with masses of the new bosons up to 1000 GeV. The results are interpreted in the context of the two-Higgs-doublet model. [Figure not available: see fulltext.]

    Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV

    Get PDF
    A study of the B +→ J / ψ Λ ¯ p decay using proton-proton collision data collected at s = 8 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb−1, is presented. The ratio of branching fractions B(B+→J/ψΛ¯p)/B(B+→J/ψK∗(892)+) is measured to be (1.054 ± 0.057(stat) ± 0.035(syst) ± 0.011(B))%, where the last uncertainty reflects the uncertainties in the world-average branching fractions of Λ ¯ and K*(892) + decays to reconstructed final states. The invariant mass distributions of the J / ψ Λ ¯ , J/ψp, and Λ ¯ p systems produced in the B +→ J / ψ Λ¯ p decay are investigated and found to be inconsistent with the pure phase space hypothesis. The analysis is extended by using a model-independent angular amplitude analysis, which shows that the observed invariant mass distributions are consistent with the contributions from excited kaons decaying to the Λ ¯ p system. [Figure not available: see fulltext.