841 research outputs found

    Study of Bulk Damage of High Dose Gamma Irradiated p-type Silicon Diodes with Various Resistivities

    Full text link
    The bulk damage of p-type silicon detectors caused by high doses of gamma irradiation has been studied. The study was carried out on three types of n+^{+}-in-p silicon diodes with comparable geometries but different initial resistivities. This allowed to determine how different initial parameters of studied samples influence radiation-induced changes in the measured characteristics. The diodes were irradiated by a Cobalt-60 gamma source to total ionizing doses ranging from 0.50 up to 8.28 MGy, and annealed for 80 minutes at 60 {\deg}C. The Geant4 toolkit for simulation of the passage of particles through matter was used to simulate the deposited energy homogeneity, to verify the equal distribution of total deposited energies through all the layers of irradiated samples, and to calculate the secondary electron spectra in the irradiation box. The main goal of the study was to characterize the gamma-radiation induced displacement damage by measuring current-voltage characteristics (IV), and the evolution of the full depletion voltage with the total ionizing dose, by measuring capacitance-voltage characteristics (CV). It has been observed that the bulk leakage current increases linearly with total ionizing dose, and the damage coefficient depends on the initial resistivity of the silicon diode. The effective doping concentration and therefore full depletion voltage significantly decreases with increasing total ionizing dose, before starting to increase again at a specific dose. We assume that this decrease is caused by the effect of acceptor removal. Another noteworthy observation of this study is that the IV and CV measurements of the gamma irradiated diodes do not reveal any annealing effect

    Measurement of exclusive pion pair production in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF

    Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at √s=13 TeV with the ATLAS detector