25 research outputs found

    Characterizing maser polarization: effects of saturation, anisotropic pumping and hyperfine structure

    Get PDF
    The polarization of masers contains information on the magnetic field strength and direction of the regions they occur in. Many maser polarization observations have been performed over the last 30 years. However, versatile maser polarization models that can aide in the interpretation of these observations are not available. We aim to develop a program suite that can compute the polarization by a magnetic field of any non-paramagnetic maser specie at arbitrarily high maser saturation. Furthermore, we aim to investigate the polarization of masers by non-Zeeman polarizing effects. We aim to present a general interpretive structure for maser polarization observations. We expand existing maser polarization theories of non-paramagnetic molecules and incorporate these in a numerical modeling program suite. We present a modeling program that CHAracterizes Maser Polarization (CHAMP) that can examine the polarization of masers of arbitrarily high maser saturation and high angular momentum. Also, hyperfine multiplicity of the maser-transition can be incorporated. The user is able to investigate non-Zeeman polarizing mechanisms such as anisotropic pumping and polarized incident seed radiation. We present an analysis of the polarization of v = 1 SiO masers and the 22 GHz water maser. We comment on the underlying polarization mechanisms, and also investigate non-Zeeman effects. We identify the regimes where different polarizing mechanisms will be dominant and present the polarization characteristics of the SiO and water masers. From the results of our calculations, we identify markers to recognize alternative polarization mechanisms.Comment: 67 pages, 27 figures. Accepted to be published in A&

    Tracing cosmic magnetic fields using molecules

    Get PDF
    Understanding the magnetic field strength and morphology of astrophysical regions is of great importance to understand their dynamics. There exist a number of methods astronomers can employ to trace magnetic field structures, and each have their own limitations. This thesis focuses on tracing magnetic field using molecules.A promising technique to trace the magnetic field morphology around evolved stars, or on the smallest scales of star forming regions, is (sub-)millimeter spectral line polarization observations. Line (linear) polarization can either arise in association with maser radiative transfer, or alternatively, molecular lines polarize through the Goldreich-Kylafis effect. In both cases, the polarization angle traces the magnetic field with a 90-degree ambiguity. In order to remove this ambiguity, and to estimate the observational viability of particular line polarization measurements, polarized line radiative transfer needs to be employed. This thesis contributes to this field in that it presents a three-dimensional polarized line radiative transfer tool: PORTAL. PORTAL simulates the emergence of thermal molecular line polarization in astrophysical objects of arbitrary geometry and magnetic field morphology. Also, this thesis introduces a novel polarization mechanism: collisional polarization. Which provides the possibility of directly detecting ambipolar diffusion in disks through the polarization of molecular ions.Some molecules occur as masers. Masers occur naturally in specific astrophysical regions, which are often associated with highly dynamical events. Their emission is characterized by narrow lines and high brightness temperatures, and is often associated with polarization. The polarization of masers contains information on the magnetic field strength and direction of the regions they occur in. Many maser polarization observations have been performed over the last 30 years. However, one requires versatile maser polarization models that can aide in the interpretation of these observations. This thesis contributes to the study of maser polarization by presenting a modeling program called CHAMP (CHAracterizing Maser Polarization) that simulates the polarization of masers of arbitrarily high maser saturation and high angular momentum.Methanol masers occur exclusively in association with high-mass star forming regions. They trace specific regions there, and may teach us about the magnetic field structures in the densest regions. There have been many polarization observations of methanol, but proper interpretation of them has not been possible because the molecular properties associated with its magnetic field interactions have been unknown. This thesis presents the first quantum chemical models of methanols magnetic field interactions. With them, we re-interpret the many previous methanol maser polarization observations and conclude that magnetic fields are dynamically important to the process of high-mass star formation

    Collisional polarization of molecular ions: a signpost of ambipolar diffusion

    Get PDF
    Magnetic fields play a role in the dynamics of many astrophysical processes, but they are hard to detect. In a partially ionized plasma, a magnetic field works directly on the ionized medium but not on the neutral medium, which gives rise to a velocity drift between them: ambipolar diffusion. This process is suggested to be important in the process of star formation, but has never been directly observed. We introduce a method that could be used to detect ambipolar diffusion and the magnetic field that gives rise to it, where we exploit the velocity drift between the charged and neutral medium. By using a representative classical model of the collision dynamics, we show that molecular ions partially align themselves when a velocity drift is present between the molecular ion and its main collision partner H2. We demonstrate that ambipolar diffusion potently aligns molecular ions in regions denser than their critical density, which subsequently leads to partially polarized emission from these species. We include a model for HCO+ and show that collisional polarization could be detectable for the ambipolar drifts predicted by numerical simulations of the inner protostellar disk regions. The polarization vectors are aligned perpendicular to the magnetic field direction projected on the plane of the sky.Comment: 5 pages, 2 figures. Accepted and published in A&

    A quantum-chemical study to the magnetic characteristics of methanol and its applications in astronomy

    Get PDF
    Magnetic fields play an important role during star formation. Direct magnetic field strength observations have proven specifically challenging in the dynamic protostellar phase. Because of their occurrence in the densest parts of star forming regions, masers, through polarization observations, are the main source of magnetic field strength and morphology measurements around protostars. Of all maser species, methanol is one of the strongest and most abundant tracers of gas around high-mass protostellar disks and in outflows. However, because experimental determination of the magnetic character- istics of methanol has remained unsuccessful, a magnetic field strength analysis of these regions could hitherto not be performed. In this thesis, we present quantum-chemical calculations of the magnetic characteristics of methanol. We present the parameters characterizing the internal magnetic interactions: the hyperfine structure, as well as the parameters characterizing the interaction of methanol with an external magnetic field. We use these parameters in re-analyzing methanol maser polarization observa- tions. With these calculations, we can confirm the presence of dynamically important magnetic fields around protostars

    Hyperfine interactions and internal rotation in methanol

    Get PDF
    We present a rigorous derivation of the nuclear spin-rotation and spin-torsion coupling terms in the hyperfine Hamiltonian for molecules with internal rotation. Our formulas differ from the expressions derived by Heuvel and Dymanus [J. Mol. Spectrosc. 47, 363 (1973)], which these authors used and which were also applied recently by others to interpret experimental hyperfine spectra of such molecules. In the present work, our theoretical results are applied to methanol. We calculate the nuclear spin-spin magnetic dipole-dipole interactions and the nuclear contribution to the spin-torsion coupling vectors from the nuclear coordinates as functions of the internal rotation angle γ, compute the spin-rotation coupling tensors by ab initio electronic structure methods also as functions of γ, and obtain the missing parameters for the electronic contribution to the spin-torsion coupling from a fit to measured spectra. The resulting hyperfine Hamiltonian is then used to compute hyperfine transition frequencies and intensities for twelve torsion-rotation transitions in methanol. With the use of the ab initio calculated spin-rotation coupling parameters without any modification, and physically reasonable values for the spin-torsion coupling parameters from the fit, we find good agreement with all of the measured spectra

    Polarization properties of methanol masers

    Get PDF
    (Abridged) Astronomical masers have been effective tools to study magnetic fields for many years. In particular, methanol can be used to probe different parts of protostars such as accretion discs and outflows, since it produces one of the strongest and the most commonly observed masers in massive star-forming regions. We investigate the polarization properties of selected methanol maser transitions in light of newly calculated methanol Land\'e g-factors and considering hyperfine components. We compare our results with previous observations and we evaluate the effect of preferred hyperfine pumping and non-Zeeman effects. We run simulations using the radiative transfer code CHAMP. We find a dependence of linear and circular polarization fractions on the hyperfine transitions. Preferred hyperfine pumping can explain some high levels of linear and circular polarization and some of the peculiar features seen in the S-shape of observed V-profiles. Methanol masers are not significantly affected by non-Zeeman effects. Our models show that for methanol maser emission, both the linear and circular polarization percentages depend on which hyperfine transition is masing and the degree to which it is being pumped. Since non-Zeeman effects become more relevant at high values of brightness temperatures, it is important to obtain good estimates of these quantities and on maser beaming angles. Better constraints on the brightness temperature will help in understand about the extent to which non-Zeeman effects contribute to the observed polarization percentages. In order to detect separate hyperfine components, an intrinsic thermal line width significantly smaller than the hyperfine separation is required.Comment: Accepted for publication in Astronomy & Astrophysic

    Characterization of methanol as a magnetic field tracer in star-forming regions

    Get PDF
    Magnetic fields play an important role during star formation. Direct magnetic field strength observations have proven specifically challenging in the extremely dynamic protostellar phase. Because of their occurrence in the densest parts of star forming regions, masers, through polarization observations, are the main source of magnetic field strength and morphology measurements around protostars. Of all maser species, methanol is one of the strongest and most abundant tracers of gas around high-mass protostellar disks and in outflows. However, as experimental determination of the magnetic characteristics of methanol has remained largely unsuccessful, a robust magnetic field strength analysis of these regions could hitherto not be performed. Here we report a quantitative theoretical model of the magnetic properties of methanol, including the complicated hyperfine structure that results from its internal rotation. We show that the large range in values of the Land\'{e} g-factors of the hyperfine components of each maser line lead to conclusions which differ substantially from the current interpretation based on a single effective g-factor. These conclusions are more consistent with other observations and confirm the presence of dynamically important magnetic fields around protostars. Additionally, our calculations show that (non-linear) Zeeman effects must be taken into account to further enhance the accuracy of cosmological electron-to-proton mass ratio determinations using methanol.Comment: 23 pages, 3 figures, excluding Supplementary information. Author manuscript version before editorial/copyediting by Nature Astronomy. Journal version available via http://rdcu.be/FPeB . Supplementary material available via https://static-content.springer.com/esm/art%3A10.1038%2Fs41550-017-0341-8/MediaObjects/41550_2017_341_MOESM1_ESM.pd

    Maser Polarization

    Get PDF
    Through the observations and the analysis of maser polarization it is possible to measure the magnetic field in several astrophysical environments (e.g., star-forming regions, evolved stars). In particular from the linearly and circularly polarized emissions we can determine the orientation and the strength of the magnetic field, respectively. In these proceedings the implications, on observed data, of the new estimation of the Landé g-factors for the CH3OH maser are presented. Furthermore, some example of the most recent results achieved in observing the polarized maser emission from several maser species will also be reported

    The shock-heated atmosphere of an asymptotic giant branch star resolved by ALMA

    Full text link
    Our current understanding of the chemistry and mass-loss processes in solar-like stars at the end of their evolution depends critically on the description of convection, pulsations and shocks in the extended stellar atmosphere. Three-dimensional hydrodynamical stellar atmosphere models provide observational predictions, but so far the resolution to constrain the complex temperature and velocity structures seen in the models has been lacking. Here we present submillimeter continuum and line observations that resolve the atmosphere of the asymptotic giant branch star W Hya. We show that hot gas with chromospheric characteristics exists around the star. Its filling factor is shown to be small. The existence of such gas requires shocks with a cooling time larger than commonly assumed. A shocked hot layer will be an important ingredient in the models of stellar convection, pulsation and chemistry that underlie our current understanding of the late stages of stellar evolution.Comment: 30 pages, 9 figures, including Supplementary information. Author manuscript version before editorial/copyediting by Nature Astronomy. Journal version available via http://rdcu.be/xUW

    Detecting chiral asymmetry in the interstellar medium using propylene oxide

    Get PDF
    Context. Life is distinctly homochiral. The origins of this homochirality are under active debate. Recently, propylene oxide has been detected in the gas-phase interstellar medium (ISM). The enantiomeric composition of ISM propylene oxide may be probed through circular polarization measurements, but accurate estimates of the circular dichroism properties of the microwave transitions of propylene oxide are not available. Aims. Our aim is to develop a model of the circular dichroic activity in torsion–rotation transitions of closed-shell chiral molecules such as propylene oxide. With this model we can estimate the viability, and optimize the observation strategies, of enantiomeric excess detection in ISM propylene oxide. Methods. Circular dichroism in spectral lines manifests through the simultaneous interaction of an electromagnetic radiation field with the molecular electric dipole moment and magnetic dipole moment. We developed techniques to quantify electric dipole and magnetic dipole moments of torsion–rotation transitions by expanding on earlier modeling of the electric and magnetic dipole properties of single torsion–rotation levels. To model the circular dichroism properties of propylene oxide, we used these techniques in combination with ab initio quantum chemical calculations. Results. The expressions for the dichroic activity of the microwave transitions of torsionally active molecules are derived. We find that the torsional motion of molecules exhibiting internal rotation contributes significantly to the total magnetic moment. We present estimates for the dichroic activity of the torsion–rotation transitions of propylene oxide. We predict that the circular polarization fractions of emission lines of enantiopure propylene oxide relevant to astronomical detections are on the order of 10−6. Conclusions. Due to the low predicted circular polarization fractions, we conclude that enantiomeric characterization of propylene oxide in the gas phase of the ISM is impossible with the current astronomical observation techniques. We suggest that only chiral radical species may be viably employed for purposes of enantiomeric excess detection. We estimate that laboratory experiments may be successful in detecting the enantiomeric composition of a mixture of propylene oxide through microwave dichroism spectroscopy
    corecore