17,770 research outputs found

### The Arity Hierarchy in the Polyadic $\mu$-Calculus

The polyadic mu-calculus is a modal fixpoint logic whose formulas define
relations of nodes rather than just sets in labelled transition systems. It can
express exactly the polynomial-time computable and bisimulation-invariant
queries on finite graphs. In this paper we show a hierarchy result with respect
to expressive power inside the polyadic mu-calculus: for every level of
fixpoint alternation, greater arity of relations gives rise to higher
expressive power. The proof uses a diagonalisation argument.Comment: In Proceedings FICS 2015, arXiv:1509.0282

### The average GeV-band Emission from Gamma-Ray Bursts

We analyze the emission in the 0.3-30 GeV energy range of Gamma-Ray Bursts
detected with the Fermi Gamma-ray Space Telescope. We concentrate on bursts
that were previously only detected with the Gamma-Ray Burst Monitor in the keV
energy range. These bursts will then be compared to the bursts that were
individually detected with the Large Area Telescope at higher energies. To
estimate the emission of faint GRBs we use non-standard analysis methods and
sum over many GRBs to find an average signal which is significantly above
background level. We use a subsample of 99 GRBs listed in the Burst Catalog
from the first two years of observation. Although mostly not individually
detectable, the bursts not detected by the Large Area Telescope on average emit
a significant flux in the energy range from 0.3 GeV to 30 GeV, but their
cumulative energy fluence is only 8% of that of all GRBs. Likewise, the
GeV-to-MeV flux ratio is less and the GeV-band spectra are softer. We confirm
that the GeV-band emission lasts much longer than the emission found in the keV
energy range. The average allsky energy flux from GRBs in the GeV band is
6.4*10^-4 erg cm^-2 yr^-1 or only 4% of the energy flux of cosmic rays above
the ankle at 10^18.6 eV.Comment: Astronomy and Astrophysics, version accepted for publicatio

### Model-Checking the Higher-Dimensional Modal mu-Calculus

The higher-dimensional modal mu-calculus is an extension of the mu-calculus
in which formulas are interpreted in tuples of states of a labeled transition
system. Every property that can be expressed in this logic can be checked in
polynomial time, and conversely every polynomial-time decidable problem that
has a bisimulation-invariant encoding into labeled transition systems can also
be defined in the higher-dimensional modal mu-calculus. We exemplify the latter
connection by giving several examples of decision problems which reduce to
model checking of the higher-dimensional modal mu-calculus for some fixed
formulas. This way generic model checking algorithms for the logic can then be
used via partial evaluation in order to obtain algorithms for theses problems
which may benefit from improvements that are well-established in the field of
program verification, namely on-the-fly and symbolic techniques. The aim of
this work is to extend such techniques to other fields as well, here
exemplarily done for process equivalences, automata theory, parsing, string
problems, and games.Comment: In Proceedings FICS 2012, arXiv:1202.317

### Satisfiability Games for Branching-Time Logics

The satisfiability problem for branching-time temporal logics like CTL*, CTL
and CTL+ has important applications in program specification and verification.
Their computational complexities are known: CTL* and CTL+ are complete for
doubly exponential time, CTL is complete for single exponential time. Some
decision procedures for these logics are known; they use tree automata,
tableaux or axiom systems. In this paper we present a uniform game-theoretic
framework for the satisfiability problem of these branching-time temporal
logics. We define satisfiability games for the full branching-time temporal
logic CTL* using a high-level definition of winning condition that captures the
essence of well-foundedness of least fixpoint unfoldings. These winning
conditions form formal languages of \omega-words. We analyse which kinds of
deterministic {\omega}-automata are needed in which case in order to recognise
these languages. We then obtain a reduction to the problem of solving parity or
B\"uchi games. The worst-case complexity of the obtained algorithms matches the
known lower bounds for these logics. This approach provides a uniform, yet
complexity-theoretically optimal treatment of satisfiability for branching-time
temporal logics. It separates the use of temporal logic machinery from the use
of automata thus preserving a syntactical relationship between the input
formula and the object that represents satisfiability, i.e. a winning strategy
in a parity or B\"uchi game. The games presented here work on a Fischer-Ladner
closure of the input formula only. Last but not least, the games presented here
come with an attempt at providing tool support for the satisfiability problem
of complex branching-time logics like CTL* and CTL+

### Buffered Simulation Games for B\"uchi Automata

Simulation relations are an important tool in automata theory because they
provide efficiently computable approximations to language inclusion. In recent
years, extensions of ordinary simulations have been studied, for instance
multi-pebble and multi-letter simulations which yield better approximations and
are still polynomial-time computable.
In this paper we study the limitations of approximating language inclusion in
this way: we introduce a natural extension of multi-letter simulations called
buffered simulations. They are based on a simulation game in which the two
players share a FIFO buffer of unbounded size. We consider two variants of
these buffered games called continuous and look-ahead simulation which differ
in how elements can be removed from the FIFO buffer. We show that look-ahead
simulation, the simpler one, is already PSPACE-hard, i.e. computationally as
hard as language inclusion itself. Continuous simulation is even EXPTIME-hard.
We also provide matching upper bounds for solving these games with infinite
state spaces.Comment: In Proceedings AFL 2014, arXiv:1405.527

### The \mu-Calculus Alternation Hierarchy Collapses over Structures with Restricted Connectivity

It is known that the alternation hierarchy of least and greatest fixpoint
operators in the mu-calculus is strict. However, the strictness of the
alternation hierarchy does not necessarily carry over when considering
restricted classes of structures. A prominent instance is the class of infinite
words over which the alternation-free fragment is already as expressive as the
full mu-calculus. Our current understanding of when and why the mu-calculus
alternation hierarchy is not strict is limited. This paper makes progress in
answering these questions by showing that the alternation hierarchy of the
mu-calculus collapses to the alternation-free fragment over some classes of
structures, including infinite nested words and finite graphs with feedback
vertex sets of a bounded size. Common to these classes is that the connectivity
between the components in a structure from such a class is restricted in the
sense that the removal of certain vertices from the structure's graph
decomposes it into graphs in which all paths are of finite length. Our collapse
results are obtained in an automata-theoretic setting. They subsume,
generalize, and strengthen several prior results on the expressivity of the
mu-calculus over restricted classes of structures.Comment: In Proceedings GandALF 2012, arXiv:1210.202

### A Canonical Model Construction for Iteration-Free PDL with Intersection

We study the axiomatisability of the iteration-free fragment of Propositional
Dynamic Logic with Intersection and Tests. The combination of program
composition, intersection and tests makes its proof-theory rather difficult. We
develop a normal form for formulae which minimises the interaction between
these operators, as well as a refined canonical model construction. From these
we derive an axiom system and a proof of its strong completeness.Comment: In Proceedings GandALF 2016, arXiv:1609.0364

### The Fixpoint-Iteration Algorithm for Parity Games

It is known that the model checking problem for the modal mu-calculus reduces
to the problem of solving a parity game and vice-versa. The latter is realised
by the Walukiewicz formulas which are satisfied by a node in a parity game iff
player 0 wins the game from this node. Thus, they define her winning region,
and any model checking algorithm for the modal mu-calculus, suitably
specialised to the Walukiewicz formulas, yields an algorithm for solving parity
games. In this paper we study the effect of employing the most straight-forward
mu-calculus model checking algorithm: fixpoint iteration. This is also one of
the few algorithms, if not the only one, that were not originally devised for
parity game solving already. While an empirical study quickly shows that this
does not yield an algorithm that works well in practice, it is interesting from
a theoretical point for two reasons: first, it is exponential on virtually all
families of games that were designed as lower bounds for very particular
algorithms suggesting that fixpoint iteration is connected to all those.
Second, fixpoint iteration does not compute positional winning strategies. Note
that the Walukiewicz formulas only define winning regions; some additional work
is needed in order to make this algorithm compute winning strategies. We show
that these are particular exponential-space strategies which we call
eventually-positional, and we show how positional ones can be extracted from
them.Comment: In Proceedings GandALF 2014, arXiv:1408.556

- â€¦