17,770 research outputs found

    The Arity Hierarchy in the Polyadic μ\mu-Calculus

    Full text link
    The polyadic mu-calculus is a modal fixpoint logic whose formulas define relations of nodes rather than just sets in labelled transition systems. It can express exactly the polynomial-time computable and bisimulation-invariant queries on finite graphs. In this paper we show a hierarchy result with respect to expressive power inside the polyadic mu-calculus: for every level of fixpoint alternation, greater arity of relations gives rise to higher expressive power. The proof uses a diagonalisation argument.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    The average GeV-band Emission from Gamma-Ray Bursts

    Full text link
    We analyze the emission in the 0.3-30 GeV energy range of Gamma-Ray Bursts detected with the Fermi Gamma-ray Space Telescope. We concentrate on bursts that were previously only detected with the Gamma-Ray Burst Monitor in the keV energy range. These bursts will then be compared to the bursts that were individually detected with the Large Area Telescope at higher energies. To estimate the emission of faint GRBs we use non-standard analysis methods and sum over many GRBs to find an average signal which is significantly above background level. We use a subsample of 99 GRBs listed in the Burst Catalog from the first two years of observation. Although mostly not individually detectable, the bursts not detected by the Large Area Telescope on average emit a significant flux in the energy range from 0.3 GeV to 30 GeV, but their cumulative energy fluence is only 8% of that of all GRBs. Likewise, the GeV-to-MeV flux ratio is less and the GeV-band spectra are softer. We confirm that the GeV-band emission lasts much longer than the emission found in the keV energy range. The average allsky energy flux from GRBs in the GeV band is 6.4*10^-4 erg cm^-2 yr^-1 or only 4% of the energy flux of cosmic rays above the ankle at 10^18.6 eV.Comment: Astronomy and Astrophysics, version accepted for publicatio

    Model-Checking the Higher-Dimensional Modal mu-Calculus

    Full text link
    The higher-dimensional modal mu-calculus is an extension of the mu-calculus in which formulas are interpreted in tuples of states of a labeled transition system. Every property that can be expressed in this logic can be checked in polynomial time, and conversely every polynomial-time decidable problem that has a bisimulation-invariant encoding into labeled transition systems can also be defined in the higher-dimensional modal mu-calculus. We exemplify the latter connection by giving several examples of decision problems which reduce to model checking of the higher-dimensional modal mu-calculus for some fixed formulas. This way generic model checking algorithms for the logic can then be used via partial evaluation in order to obtain algorithms for theses problems which may benefit from improvements that are well-established in the field of program verification, namely on-the-fly and symbolic techniques. The aim of this work is to extend such techniques to other fields as well, here exemplarily done for process equivalences, automata theory, parsing, string problems, and games.Comment: In Proceedings FICS 2012, arXiv:1202.317

    Satisfiability Games for Branching-Time Logics

    Full text link
    The satisfiability problem for branching-time temporal logics like CTL*, CTL and CTL+ has important applications in program specification and verification. Their computational complexities are known: CTL* and CTL+ are complete for doubly exponential time, CTL is complete for single exponential time. Some decision procedures for these logics are known; they use tree automata, tableaux or axiom systems. In this paper we present a uniform game-theoretic framework for the satisfiability problem of these branching-time temporal logics. We define satisfiability games for the full branching-time temporal logic CTL* using a high-level definition of winning condition that captures the essence of well-foundedness of least fixpoint unfoldings. These winning conditions form formal languages of \omega-words. We analyse which kinds of deterministic {\omega}-automata are needed in which case in order to recognise these languages. We then obtain a reduction to the problem of solving parity or B\"uchi games. The worst-case complexity of the obtained algorithms matches the known lower bounds for these logics. This approach provides a uniform, yet complexity-theoretically optimal treatment of satisfiability for branching-time temporal logics. It separates the use of temporal logic machinery from the use of automata thus preserving a syntactical relationship between the input formula and the object that represents satisfiability, i.e. a winning strategy in a parity or B\"uchi game. The games presented here work on a Fischer-Ladner closure of the input formula only. Last but not least, the games presented here come with an attempt at providing tool support for the satisfiability problem of complex branching-time logics like CTL* and CTL+

    Buffered Simulation Games for B\"uchi Automata

    Full text link
    Simulation relations are an important tool in automata theory because they provide efficiently computable approximations to language inclusion. In recent years, extensions of ordinary simulations have been studied, for instance multi-pebble and multi-letter simulations which yield better approximations and are still polynomial-time computable. In this paper we study the limitations of approximating language inclusion in this way: we introduce a natural extension of multi-letter simulations called buffered simulations. They are based on a simulation game in which the two players share a FIFO buffer of unbounded size. We consider two variants of these buffered games called continuous and look-ahead simulation which differ in how elements can be removed from the FIFO buffer. We show that look-ahead simulation, the simpler one, is already PSPACE-hard, i.e. computationally as hard as language inclusion itself. Continuous simulation is even EXPTIME-hard. We also provide matching upper bounds for solving these games with infinite state spaces.Comment: In Proceedings AFL 2014, arXiv:1405.527

    The \mu-Calculus Alternation Hierarchy Collapses over Structures with Restricted Connectivity

    Full text link
    It is known that the alternation hierarchy of least and greatest fixpoint operators in the mu-calculus is strict. However, the strictness of the alternation hierarchy does not necessarily carry over when considering restricted classes of structures. A prominent instance is the class of infinite words over which the alternation-free fragment is already as expressive as the full mu-calculus. Our current understanding of when and why the mu-calculus alternation hierarchy is not strict is limited. This paper makes progress in answering these questions by showing that the alternation hierarchy of the mu-calculus collapses to the alternation-free fragment over some classes of structures, including infinite nested words and finite graphs with feedback vertex sets of a bounded size. Common to these classes is that the connectivity between the components in a structure from such a class is restricted in the sense that the removal of certain vertices from the structure's graph decomposes it into graphs in which all paths are of finite length. Our collapse results are obtained in an automata-theoretic setting. They subsume, generalize, and strengthen several prior results on the expressivity of the mu-calculus over restricted classes of structures.Comment: In Proceedings GandALF 2012, arXiv:1210.202

    A Canonical Model Construction for Iteration-Free PDL with Intersection

    Full text link
    We study the axiomatisability of the iteration-free fragment of Propositional Dynamic Logic with Intersection and Tests. The combination of program composition, intersection and tests makes its proof-theory rather difficult. We develop a normal form for formulae which minimises the interaction between these operators, as well as a refined canonical model construction. From these we derive an axiom system and a proof of its strong completeness.Comment: In Proceedings GandALF 2016, arXiv:1609.0364

    The Fixpoint-Iteration Algorithm for Parity Games

    Full text link
    It is known that the model checking problem for the modal mu-calculus reduces to the problem of solving a parity game and vice-versa. The latter is realised by the Walukiewicz formulas which are satisfied by a node in a parity game iff player 0 wins the game from this node. Thus, they define her winning region, and any model checking algorithm for the modal mu-calculus, suitably specialised to the Walukiewicz formulas, yields an algorithm for solving parity games. In this paper we study the effect of employing the most straight-forward mu-calculus model checking algorithm: fixpoint iteration. This is also one of the few algorithms, if not the only one, that were not originally devised for parity game solving already. While an empirical study quickly shows that this does not yield an algorithm that works well in practice, it is interesting from a theoretical point for two reasons: first, it is exponential on virtually all families of games that were designed as lower bounds for very particular algorithms suggesting that fixpoint iteration is connected to all those. Second, fixpoint iteration does not compute positional winning strategies. Note that the Walukiewicz formulas only define winning regions; some additional work is needed in order to make this algorithm compute winning strategies. We show that these are particular exponential-space strategies which we call eventually-positional, and we show how positional ones can be extracted from them.Comment: In Proceedings GandALF 2014, arXiv:1408.556
    corecore