2,290 research outputs found

    Beyond Standard Model Higgs

    Full text link
    Recent LHC highlights of searches for Higgs bosons beyond the Standard Model are presented. The results by the ATLAS and CMS collaborations are based on 2011 and 2012 proton-proton collision data at centre-of-mass energies of 7 and 8 TeV, respectively. They test a wide range of theoretical models.Comment: Presented at the XXXIV Physics in Collision Symposium, Bloomington, Indiana, September 16-20, 2014. 9 pages, 9 figure

    High-pTp_T multi-jet final states at ATLAS and CMS

    Full text link
    The increase of the centre-of-mass energy of the Large Hadron Collider (LHC) to 13 TeV has opened up a new energy regime. Final states including high-momentum multi-jet signatures often dominate beyond standard model phenomena, in particular decay products of new heavy particles. While the potential di-photon resonance currently receives a lot of attention, multi-jet final states pose strong constraints on what physics model an observation could actually be described with. In this presentation, the latest results of the ATLAS and CMS collaborations in high transverse momentum multi-jet final states are summarised. This includes searches for heavy resonances and new phenomena in the di-jet mass spectrum, di-jet angular distributions, and the sum of transverse momenta in different event topologies. Furthermore, results on leptoquark pair production will be shown. A particular focus is laid on the different background estimation methods.Comment: 8 pages, Presented at Moriond/EW2016 51st Rencontres de Moriond on Electroweak Interactions and Unified Theorie

    Active suspension design for a Large Space Structure ground test facility

    Get PDF
    The expected future high performance requirements for Large Space Structures (LSS) enforce technology innovations such as active vibration damping techniques e.g., by means of structure sensors and actuators. The implementation of new technologies like that requires an interactive and integrated structural and control design with an increased effort in hardware validation by ground testing. During the technology development phase generic system tests will be most important covering verification and validation aspects up to the preparation and definition of relevant space experiments. For many applications using advanced designs it is deemed necessary to improve existing testing technology by further reducing disturbances and gravity coupling effects while maintaining high performance reliability. A key issue in this context is the improvement of suspension techniques. The ideal ground test facility satisfying these requirements completely will never be found. The highest degree of reliability will always be obtained by passive suspension methods taking into account severe performance limitations such as non-zero rigid body modes, restriction of degrees of freedom of motion and frequency response limitations. Passive compensation mechanisms, e.g., zero-spring-rate mechanisms, either require large moving masses or they are limited with respect to low-frequency performance by friction, stiction or other non-linear effects. With active suspensions these limitations can be removed to a large extent thereby increasing the range of applications. Despite an additional complexity which is associated with a potential risk in reliability their development is considered promising due to the amazing improvement of real-time control technology which is still continuing

    Lorentz meets Lipschitz

    Full text link
    We show that maximal causal curves for a Lipschitz continuous Lorentzian metric admit a C1,1\mathcal{C}^{1,1}-parametrization and that they solve the geodesic equation in the sense of Filippov in this parametrization. Our proof shows that maximal causal curves are either everywhere lightlike or everywhere timelike. Furthermore, the proof demonstrates that maximal causal curves for an α\alpha-H\"older continuous Lorentzian metric admit a C1,α4\mathcal{C}^{1,\frac{\alpha}{4}}-parametrization.Comment: 25 pages; v2: minor improvements of the presentatio

    Midrapidity phi production in Au+Au collisions at sqrt[sNN]=130 GeV

    Get PDF
    We present the first measurement of midrapidity vector meson phi production in Au+Au collisions at RHIC (sqrt[sNN]=130 GeV) from the STAR detector. For the 11% highest multiplicity collisions, the slope parameter from an exponential fit to the transverse mass distribution is T=379±50(stat)±45(syst) MeV, the yield dN/dy=5.73±0.37(stat)±0.69(syst) per event, and the ratio N phi /Nh- is found to be 0.021±0.001(stat)±0.004(syst). The measured ratio N phi /Nh- and T for the phi meson at midrapidity do not change for the selected multiplicity bins.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied30, J. Berger11, H. Bichsel29, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez31, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro30, D. Cebra5, S. Chattopadhyay30, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian31, B. Choi27, W. Christie2, J. P. Coffin13, T. M. Cormier30, J. G. Cramer29, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop31, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, V. Faine2, E. Finch31, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, N. Gagunashvili9, J. Gans31, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski28, O. Grachov30, D. Greiner15, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris31, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann27, M. Horsley31, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara27, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik28, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel28, J. Klay5, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde31, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell27, B. Lasiuk31, F. Laue2, A. Lebedev2, T. LeCompte1, R. Lednický9, V. M. Leontiev22, M. J. LeVine2, Q. Li30, Q. Li15, S. J. Lindenbaum19, M. A. Lisa20, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka31, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller31, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, D. Moltz15, C. F. Moore27, V. Morozov15, M. M. de Moura30, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey30, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov30, T. Pawlak28, V. Perevoztchikov2, W. Peryt28, V. A. Petrov10, E. Platner24, J. Pluta28, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle29, C. Pruneau30, S. Radomski28, G. Rai15, O. Ravel26, R. L. Ray27, S. V. Razin9,12, D. Reichhold8, J. G. Reid29, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, D. Russ7, V. Rykov30, I. Sakrejda15, J. Sandweiss31, A. C. Saulys2, I. Savin10, J. Schambach27, R. P. Scharenberg23, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, K. Schweda15, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov31, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky30, M. Strikhanov18, B. Stringfellow23, C. Struck11, A. A. P. Suaide30, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas28, J. Takahashi25, A. H. Tang14, J. H. Thomas15, V. Tikhomirov18, T. A. Trainor29, S. Trentalange6, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin30, F. Wang23, H. Ward27, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu31, A. E. Yakutin22, E. Yamamoto6, J. Yang6, P. Yepes24, A. Yokosawa1, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, H. Zhang31, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev

    d-bar and 3He-bar production in sqrt[sNN] = 130 GeV Au+Au collisions

    Get PDF
    The first measurements of light antinucleus production in Au+Au collisions at the Relativistic Heavy-Ion Collider are reported. The observed production rates for d-bar and 3He-bar are much larger than in lower energy nucleus-nucleus collisions. A coalescence model analysis of the yields indicates that there is little or no increase in the antinucleon freeze-out volume compared to collisions at CERN SPS energy. These analyses also indicate that the 3He-bar freeze-out volume is smaller than the d-bar freeze-out volume.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied30, J. Berger11, H. Bichsel29, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez31, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro30, D. Cebra5, S. Chattopadhyay30, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian31, B. Choi27, W. Christie2, J. P. Coffin13, T. M. Cormier30, J. G. Cramer29, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop31, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, V. Faine2, E. Finch31, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, N. Gagunashvili9, J. Gans31, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski28, O. Grachov30, D. Greiner15, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris31, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann27, M. Horsley31, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara27, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik28, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel28, J. Klay5, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde31, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell27, B. Lasiuk31, F. Laue2, A. Lebedev2, T. LeCompte1, R. Lednický9, V. M. Leontiev22, M. J. LeVine2, Q. Li30, Q. Li15, S. J. Lindenbaum19, M. A. Lisa20, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka31, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller31, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, D. Moltz15, C. F. Moore27, V. Morozov15, M. M. de Moura30, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey30, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov30, T. Pawlak28, V. Perevoztchikov2, W. Peryt28, V. A. Petrov10, E. Platner24, J. Pluta28, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle29, C. Pruneau30, S. Radomski28, G. Rai15, O. Ravel26, R. L. Ray27, S. V. Razin9,12, D. Reichhold8, J. G. Reid29, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, D. Russ7, V. Rykov30, I. Sakrejda15, J. Sandweiss31, A. C. Saulys2, I. Savin10, J. Schambach27, R. P. Scharenberg23, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, K. Schweda15, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov31, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky30, M. Strikhanov18, B. Stringfellow23, C. Struck11, A. A. P. Suaide30, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas28, J. Takahashi25, A. H. Tang14, J. H. Thomas15, V. Tikhomirov18, T. A. Trainor29, S. Trentalange6, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin30, F. Wang23, H. Ward27, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu31, A. E. Yakutin22, E. Yamamoto6, J. Yang6, P. Yepes24, A. Yokosawa1, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, H. Zhang31, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev

    Measurement of inclusive antiprotons from Au+Au collisions at sqrt[sNN] = 130 GeVd-bar and 3He-bar production in sqrt[sNN] = 130 GeV Au+Au collisions

    Get PDF
    We report the first measurement of inclusive antiproton production at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV by the STAR experiment at RHIC. The antiproton transverse mass distributions in the measured transverse momentum range of 0.25<pperp<0.95 GeV/c are found to fall less steeply for more central collisions. The extrapolated antiproton rapidity density is found to scale approximately with the negative hadron multiplicity density.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied31, J. Berger11, H. Bichsel30, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez33, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro31, D. Cebra5, S. Chattopadhyay31, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian33, B. Choi28, W. Christie2, J. P. Coffin13, T. M. Cormier31, J. G. Cramer30, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop33, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, V. Faine2, K. Filimonov15, E. Finch33, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, C. A. Gagliardi27, N. Gagunashvili9, J. Gans33, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski29, O. Grachov31, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris33, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann28, M. Horsley33, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara28, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik29, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel29, J. Klay15, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde33, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell28, B. Lasiuk33, F. Laue2, A. Lebedev2, R. Lednický9, V. M. Leontiev22, M. J. LeVine2, Q. Li31, S. J. Lindenbaum19, M. A. Lisa20, F. Liu32, L. Liu32, Z. Liu32, Q. J. Liu30, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka33, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller33, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, C. F. Moore28, V. Morozov15, M. M. de Moura31, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey31, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov31, T. Pawlak29, V. Perevoztchikov2, W. Peryt29, V. A. Petrov10, E. Platner24, J. Pluta29, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle30, C. Pruneau31, S. Radomski29, G. Rai15, O. Ravel26, R. L. Ray28, S. V. Razin9,12, D. Reichhold8, J. G. Reid30, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, V. Rykov31, I. Sakrejda15, J. Sandweiss33, A. C. Saulys2, I. Savin10, J. Schambach28, R. P. Scharenberg23, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, K. Schweda15, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov33, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky31, M. Strikhanov18, B. Stringfellow23, C. Struck11, A. A. P. Suaide31, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas29, J. Takahashi25, A. H. Tang14, J. H. Thomas15, M. Thompson3, V. Tikhomirov18, T. A. Trainor30, S. Trentalange6, R. E. Tribble27, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin31, F. Wang23, H. Ward28, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu2, A. E. Yakutin22, E. Yamamoto15, J. Yang6, P. Yepes24, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, H. Zhang33, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev

    Identified particle elliptic flow in Au+Au collisions at sqrt[sNN] = 130 GeV

    Get PDF
    We report first results on elliptic flow of identified particles at midrapidity in Au+Au collisions at sqrt[sNN] = 130 GeV using the STAR TPC at RHIC. The elliptic flow as a function of transverse momentum and centrality differs significantly for particles of different masses. This dependence can be accounted for in hydrodynamic models, indicating that the system created shows a behavior consistent with collective hydrodynamical flow. The fit to the data with a simple model gives information on the temperature and flow velocities at freeze-out.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied30, J. Berger11, H. Bichsel29, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, R. Bossingham15, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez31, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro30, D. Cebra5, S. Chattopadhyay30, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian31, B. Choi27, W. Christie2, J. P. Coffin13, L. Conin26, T. M. Cormier30, J. G. Cramer29, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop31, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, E. Finch31, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, N. Gagunashvili9, J. Gans31, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski28, O. Grachov30, D. Greiner15, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris31, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann27, M. Horsley31, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara27, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik28, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel28, J. Klay5, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde31, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell27, B. Lasiuk31, F. Laue2, A. Lebedev2, T. LeCompte1, R. Lednický9, V. M. Leontiev22, P. Leszczynski28, M. J. LeVine2, Q. Li30, Q. Li15, S. J. Lindenbaum19, M. A. Lisa20, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka31, A. Maliszewski28, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller31, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, D. Moltz15, C. F. Moore27, V. Morozov15, M. M. de Moura30, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey30, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov30, T. Pawlak28, V. Perevoztchikov2, W. Peryt28, V. A. Petrov10, W. Pinganaud26, E. Platner24, J. Pluta28, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle29, C. Pruneau30, S. Radomski28, G. Rai15, O. Ravel26, R. L. Ray27, S. V. Razin9,12, D. Reichhold8, J. G. Reid29, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, D. Russ7, V. Rykov30, I. Sakrejda15, J. Sandweiss31, A. C. Saulys2, I. Savin10, J. Schambach27, R. P. Scharenberg23, K. Schweda15, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov31, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky30, M. Strikhanov18, B. Stringfellow23, H. Stroebele11, C. Struck11, A. A. P. Suaide30, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas28, J. Takahashi25, A. H. Tang14, J. H. Thomas15, V. Tikhomirov18, T. A. Trainor29, S. Trentalange6, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin30, F. Wang23, H. Ward27, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu31, A. E. Yakutin22, E. Yamamoto6, J. Yang6, P. Yepes24, A. Yokosawa1, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev

    Elliptic flow from two- and four-particle correlations in Au+Au collisions at sqrt[sNN]=130 GeV

    Get PDF
    Elliptic flow holds much promise for studying the early-time thermalization attained in ultrarelativistic nuclear collisions. Flow measurements also provide a means of distinguishing between hydrodynamic models and calculations which approach the low density (dilute gas) limit. Among the effects that can complicate the interpretation of elliptic flow measurements are azimuthal correlations that are unrelated to the reaction plane (nonflow correlations). Using data for Au + Au collisions at sqrt[sNN]=130 GeV from the STAR time projection chamber, it is found that four-particle correlation analyses can reliably separate flow and nonflow correlation signals. The latter account for on average about 15% of the observed second-harmonic azimuthal correlation, with the largest relative contribution for the most peripheral and the most central collisions. The results are also corrected for the effect of flow variations within centrality bins. This effect is negligible for all but the most central bin, where the correction to the elliptic flow is about a factor of 2. A simple new method for two-particle flow analysis based on scalar products is described. An analysis based on the distribution of the magnitude of the flow vector is also described.alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied31, J. Berger11, H. Bichsel30, A. Billmeier31, L. C. Bland2, C. O. Blyth3, B. E. Bonner24, A. Boucham26, A. Brandin18, A. Bravar2, R. V. Cadman1, H. Caines33, M. Calderón de la Barca Sánchez2, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro31, D. Cebra5, P. Chaloupka20, S. Chattopadhyay31, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian33, B. Choi28, W. Christie2, J. P. Coffin13, T. M. Cormier31, J. G. Cramer30, H. J. Crawford4, W. S. Deng2, A. A. Derevschikov22, L. Didenko2, T. Dietel11, J. E. Draper5, V. B. Dunin9, J. C. Dunlop33, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini2, V. Faine2, K. Filimonov15, E. Finch33, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15,32, C. A. Gagliardi27, N. Gagunashvili9, J. Gans33, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, O. Grachov31, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris33, T. W. Henry27, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann28, M. Horsley33, H. Z. Huang6, T. J. Humanic20, G. Igo6, A. Ishihara28, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik29, I. Johnson15, P. G. Jones3, E. G. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, J. Kiryluk6, A. Kisiel29, J. Klay15, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, M. Kopytine14, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde33, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell28, B. Lasiuk33, F. Laue2, A. Lebedev2, R. Lednický9, V. M. Leontiev22, M. J. LeVine2, Q. Li31, S. J. Lindenbaum19, M. A. Lisa20, F. Liu32, L. Liu32, Z. Liu32, Q. J. Liu30, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, T. Ludlam2, D. Lynn2, J. Ma6, R. Majka33, S. Margetis14, C. Markert33, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller33, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, C. F. Moore28, V. Morozov15, M. M. de Moura31, M. G. Munhoz25, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey31, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov31, T. Pawlak29, V. Perevoztchikov2, W. Peryt29, V. A. Petrov10, M. Planinic12, J. Pluta29, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle30, C. Pruneau31, J. Putschke16, G. Rai15, G. Rakness12, O. Ravel26, R. L. Ray28, S. V. Razin9,12, D. Reichhold8, J. G. Reid30, G. Renault26, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, A. Rose31, C. Roy26, V. Rykov31, I. Sakrejda15, S. Salur33, J. Sandweiss33, A. C. Saulys2, I. Savin10, J. Schambach28, R. P. Scharenberg23, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, K. Schweda15, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov33, R. Snellings15, P. Sorensen6, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky31, M. Strikhanov18, B. Stringfellow23, C. Struck11, A. A. P. Suaide31, E. Sugarbaker20, C. Suire2, M. Sumbera20, B. Surrow2, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas29, A. Tai6, J. Takahashi25, A. H. Tang14, J. H. Thomas15, M. Thompson3, V. Tikhomirov18, M. Tokarev9, M. B. Tonjes17, T. A. Trainor30, S. Trentalange6, R. E. Tribble27, V. Trofimov18, O. Tsai6, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin31, F. Wang23, H. Ward28, J. W. Watson14, R. Wells20, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt33, J. Wood6, N. Xu15, Z. Xu2, A. E. Yakutin22, E. Yamamoto15, J. Yang6, P. Yepes24, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, H. Zhang33, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev

    Pion interferometry of sqrt[sNN] = 130 GeV Au+Au collisions at RHIC

    Get PDF
    Two-pion correlation functions in Au+Au collisions at sqrt[sNN] = 130 GeV have been measured by the STAR (solenoidal tracker at RHIC) detector. The source size extracted by fitting the correlations grows with event multiplicity and decreases with transverse momentum. Anomalously large sizes or emission durations, which have been suggested as signals of quark-gluon plasma formation and rehadronization, are not observed. The Hanbury Brown-Twiss parameters display a weak energy dependence over a broad range in sqrt[sNN].alle Autoren: C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B. D. Anderson14, M. Anderson5, G. S. Averichev9, J. Balewski12, O. Barannikova9,23, L. S. Barnby14, J. Baudot13, S. Bekele20, V. V. Belaga9, R. Bellwied30, J. Berger11, H. Bichsel29, L. C. Bland12, C. O. Blyth3, B. E. Bonner24, R. Bossingham15, A. Boucham26, A. Brandin18, R. V. Cadman1, H. Caines20, M. Calderón de la Barca Sánchez31, A. Cardenas23, J. Carroll15, J. Castillo26, M. Castro30, D. Cebra5, S. Chattopadhyay30, M. L. Chen2, Y. Chen6, S. P. Chernenko9, M. Cherney8, A. Chikanian31, B. Choi27, W. Christie2, J. P. Coffin13, L. Conin26, T. M. Cormier30, J. G. Cramer29, H. J. Crawford4, M. DeMello24, W. S. Deng14, A. A. Derevschikov22, L. Didenko2, J. E. Draper5, V. B. Dunin9, J. C. Dunlop31, V. Eckardt16, L. G. Efimov9, V. Emelianov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachini25, V. Faine2, E. Finch31, Y. Fisyak2, D. Flierl11, K. J. Foley2, J. Fu15, N. Gagunashvili9, J. Gans31, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabski28, O. Grachov30, D. Greiner15, V. Grigoriev18, M. Guedon13, E. Gushin18, T. J. Hallman2, D. Hardtke15, J. W. Harris31, M. Heffner5, S. Heppelmann21, T. Herston23, B. Hippolyte13, A. Hirsch23, E. Hjort15, G. W. Hoffmann27, M. Horsley31, H. Z. Huang6, T. J. Humanic20, H. Hümmler16, G. Igo6, A. Ishihara27, Yu. I. Ivanshin10, P. Jacobs15, W. W. Jacobs12, M. Janik28, I. Johnson15, P. G. Jones3, E. Judd4, M. Kaneta15, M. Kaplan7, D. Keane14, A. Kisiel28, J. Klay5, S. R. Klein15, A. Klyachko12, A. S. Konstantinov22, L. Kotchenda18, A. D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A. I. Kulikov9, G. J. Kunde31, C. L. Kunz7, R. Kh. Kutuev10, A. A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M. A. C. Lamont3, J. M. Landgraf2, S. Lange11, C. P. Lansdell27, B. Lasiuk31, F. Laue2, A. Lebedev2, T. LeCompte1, R. Lednický9, V. M. Leontiev22, M. J. LeVine2, Q. Li30, Q. Li15, S. J. Lindenbaum19, M. A. Lisa20, T. Ljubicic2, W. J. Llope24, G. LoCurto16, H. Long6, R. S. Longacre2, M. Lopez-Noriega20, W. A. Love2, D. Lynn2, R. Majka31, S. Margetis14, L. Martin26, J. Marx15, H. S. Matis15, Yu. A. Matulenko22, T. S. McShane8, F. Meissner15, Yu. Melnick22, A. Meschanin22, M. Messer2, M. L. Miller31, Z. Milosevich7, N. G. Minaev22, J. Mitchell24, V. A. Moiseenko10, D. Moltz15, C. F. Moore27, V. Morozov15, M. M. de Moura30, M. G. Munhoz25, G. S. Mutchler24, J. M. Nelson3, P. Nevski2, V. A. Nikitin10, L. V. Nogach22, B. Norman14, S. B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S. U. Pandey30, Y. Panebratsev9, S. Y. Panitkin2, A. I. Pavlinov30, T. Pawlak28, V. Perevoztchikov2, W. Peryt28, V. A. Petrov10, W. Pinganaud26, E. Platner24, J. Pluta28, N. Porile23, J. Porter2, A. M. Poskanzer15, E. Potrebenikova9, D. Prindle29, C. Pruneau30, S. Radomski28, G. Rai15, O. Ravel26, R. L. Ray27, S. V. Razin9,12, D. Reichhold8, J. G. Reid29, F. Retiere15, A. Ridiger18, H. G. Ritter15, J. B. Roberts24, O. V. Rogachevski9, J. L. Romero5, C. Roy26, D. Russ7, V. Rykov30, I. Sakrejda15, J. Sandweiss31, A. C. Saulys2, I. Savin10, J. Schambach27, R. P. Scharenberg23, K. Schweda15, N. Schmitz16, L. S. Schroeder15, A. Schüttauf16, J. Seger8, D. Seliverstov18, P. Seyboth16, E. Shahaliev9, K. E. Shestermanov22, S. S. Shimanskii9, V. S. Shvetcov10, G. Skoro9, N. Smirnov31, R. Snellings15, J. Sowinski12, H. M. Spinka1, B. Srivastava23, E. J. Stephenson12, R. Stock11, A. Stolpovsky30, M. Strikhanov18, B. Stringfellow23, H. Stroebele11, C. Struck11, A. A. P. Suaide30, E. Sugarbaker20, C. Suire13, M. Sumbera9, T. J. M. Symons15, A. Szanto de Toledo25, P. Szarwas28, J. Takahashi25, A. H. Tang14, J. H. Thomas15, V. Tikhomirov18, T. A. Trainor29, S. Trentalange6, M. Tokarev9, M. B. Tonjes17, V. Trofimov18, O. Tsai6, K. Turner2, T. Ullrich2, D. G. Underwood1, G. Van Buren2, A. M. VanderMolen17, A. Vanyashin15, I. M. Vasilevski10, A. N. Vasiliev22, S. E. Vigdor12, S. A. Voloshin30, F. Wang23, H. Ward27, J. W. Watson14, R. Wells20, T. Wenaus2, G. D. Westfall17, C. Whitten, Jr.6, H. Wieman15, R. Willson20, S. W. Wissink12, R. Witt14, N. Xu15, Z. Xu31, A. E. Yakutin22, E. Yamamoto6, J. Yang6, P. Yepes24, A. Yokosawa1, V. I. Yurevich9, Y. V. Zanevski9, I. Zborovský9, W. M. Zhang14, R. Zoulkarneev10, and A. N. Zubarev
    • …
    corecore