295 research outputs found

    Comparison of TCGA and GENIE genomic datasets for the detection of clinically actionable alterations in breast cancer.

    Get PDF
    Whole exome sequencing (WES), targeted gene panel sequencing and single nucleotide polymorphism (SNP) arrays are increasingly used for the identification of actionable alterations that are critical to cancer care. Here, we compared The Cancer Genome Atlas (TCGA) and the Genomics Evidence Neoplasia Information Exchange (GENIE) breast cancer genomic datasets (array and next generation sequencing (NGS) data) in detecting genomic alterations in clinically relevant genes. We performed an in silico analysis to determine the concordance in the frequencies of actionable mutations and copy number alterations/aberrations (CNAs) in the two most common breast cancer histologies, invasive lobular and invasive ductal carcinoma. We found that targeted sequencing identified a larger number of mutational hotspots and clinically significant amplifications that would have been missed by WES and SNP arrays in many actionable genes such as PIK3CA, EGFR, AKT3, FGFR1, ERBB2, ERBB3 and ESR1. The striking differences between the number of mutational hotspots and CNAs generated from these platforms highlight a number of factors that should be considered in the interpretation of array and NGS-based genomic data for precision medicine. Targeted panel sequencing was preferable to WES to define the full spectrum of somatic mutations present in a tumor

    The potential for liquid biopsies in the precision medical treatment of breast cancer.

    Get PDF
    Currently the clinical management of breast cancer relies on relatively few prognostic/predictive clinical markers (estrogen receptor, progesterone receptor, HER2), based on primary tumor biology. Circulating biomarkers, such as circulating tumor DNA (ctDNA) or circulating tumor cells (CTCs) may enhance our treatment options by focusing on the very cells that are the direct precursors of distant metastatic disease, and probably inherently different than the primary tumor's biology. To shift the current clinical paradigm, assessing tumor biology in real time by molecularly profiling CTCs or ctDNA may serve to discover therapeutic targets, detect minimal residual disease and predict response to treatment. This review serves to elucidate the detection, characterization, and clinical application of CTCs and ctDNA with the goal of precision treatment of breast cancer

    Matriptase regulates c-Met mediated proliferation and invasion in inflammatory breast cancer.

    Get PDF
    The poor prognosis for patients with inflammatory breast cancer (IBC) compared to patients with other types of breast cancers emphasizes the need to better understand the molecular underpinnings of this disease with the goal of developing effective targeted therapeutics. Dysregulation of matriptase expression, an epithelial-specific member of the type II transmembrane serine protease family, has been demonstrated in many different cancer types. To date, no studies have assessed the expression and potential pro-oncogenic role of matriptase in IBC. We examined the functional relationship between matriptase and the HGF/c-MET signaling pathway in the IBC cell lines SUM149 and SUM190, and in IBC patient samples. Matriptase and c-Met proteins are localized on the surface membrane of IBC cells and their expression is strongly correlated in infiltrating cancer cells and in the cancer cells of lymphatic emboli in patient samples. Abrogation of matriptase expression by silencing with RNAi or inhibition of matriptase proteolytic activity with a synthetic inhibitor impairs the conversion of inactive pro-HGF to active HGF and subsequent c-Met-mediated signaling, leading to efficient impairment of proliferation and invasion of IBC cells. These data show the potential of matriptase inhibitors as a novel targeted therapy for IBC, and lay the groundwork for the development and testing of such drugs

    Classification of Singular Fibres on Rational Elliptic Surfaces in Characteristic Three

    Full text link
    We determine and list all possible configurations of singular fibres on rational elliptic surfaces in characteristic three. In total, we find that 267 distinct configurations exist. This result complements Miranda and Persson's classification in characteristic zero, and Lang's classification in characteristic two.Comment: 40 Pages. Minor typos correcte

    UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase

    No full text
    The incidence of hypertension and cardiovascular disease correlates with latitude and rises in winter. The molecular basis for this remains obscure. As nitric oxide (NO) metabolites are abundant in human skin we hypothesised that exposure to UVA may mobilise NO bioactivity into the circulation to exert beneficial cardiovascular effects independently of vitamin D. In 24 healthy volunteers irradiation of the skin with 2 Standard Erythemal Doses of UVA lowered BP, with concomitant decreases in circulating nitrate and rises in nitrite concentrations. Unexpectedly, acute dietary intervention aimed at modulating systemic nitrate availability had no effect on UV-induced hemodynamic changes, indicating that cardiovascular effects were not mediated via direct utilization of circulating nitrate. UVA irradiation of the forearm caused increased blood flow independently of NO-synthase activity, suggesting involvement of pre-formed cutaneous NO stores. Confocal fluorescence microscopy studies of human skin pre-labelled with the NO-imaging probe DAF2-DA revealed that UVA-induced NO release occurs in a NOS-independent, dose-dependent fashion, with the majority of the light-sensitive NO pool in the upper epidermis. Collectively, our data provide mechanistic insights into an important function of the skin in modulating systemic NO bioavailability which may account for the latitudinal and seasonal variations of BP and cardiovascular disease.Journal of Investigative Dermatology accepted article preview online, 20 January 2014

    A comparison of RNA amplification techniques at sub-nanogram input concentration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression profiling of small numbers of cells requires high-fidelity amplification of sub-nanogram amounts of RNA. Several methods for RNA amplification are available; however, there has been little consideration of the accuracy of these methods when working with very low-input quantities of RNA as is often required with rare clinical samples. Starting with 250 picograms-3.3 nanograms of total RNA, we compared two linear amplification methods 1) modified T7 and 2) Arcturus RiboAmp HS and a logarithmic amplification, 3) Balanced PCR. Microarray data from each amplification method were validated against quantitative real-time PCR (QPCR) for 37 genes.</p> <p>Results</p> <p>For high intensity spots, mean Pearson correlations were quite acceptable for both total RNA and low-input quantities amplified with each of the 3 methods. Microarray filtering and data processing has an important effect on the correlation coefficient results generated by each method. Arrays derived from total RNA had higher Pearson's correlations than did arrays derived from amplified RNA when considering the entire unprocessed dataset, however, when considering a gene set of high signal intensity, the amplified arrays had superior correlation coefficients than did the total RNA arrays.</p> <p>Conclusion</p> <p>Gene expression arrays can be obtained with sub-nanogram input of total RNA. High intensity spots showed better correlation on array-array analysis than did unfiltered data, however, QPCR validated the accuracy of gene expression array profiling from low-input quantities of RNA with all 3 amplification techniques. RNA amplification and expression analysis at the sub-nanogram input level is both feasible and accurate if data processing is used to focus attention to high intensity genes for microarrays or if QPCR is used as a gold standard for validation.</p

    Circulating Tumor Cell Transcriptomics as Biopsy Surrogates in Metastatic Breast Cancer

    Full text link
    BACKGROUND Metastatic breast cancer (MBC) and the circulating tumor cells (CTCs) leading to macrometastases are inherently different than primary breast cancer. We evaluated whether whole transcriptome RNA-Seq of CTCs isolated via an epitope-independent approach may serve as a surrogate for biopsies of macrometastases. METHODS We performed RNA-Seq on fresh metastatic tumor biopsies, CTCs, and peripheral blood (PB) from 19 newly diagnosed MBC patients. CTCs were harvested using the ANGLE Parsortix microfluidics system to isolate cells based on size and deformability, independent of a priori knowledge of cell surface marker expression. RESULTS Gene expression separated CTCs, metastatic biopsies, and PB into distinct groups despite heterogeneity between patients and sample types. CTCs showed higher expression of immune oncology targets compared with corresponding metastases and PB. Predictive biomarker (n = 64) expression was highly concordant for CTCs and metastases. Repeat observation data post-treatment demonstrated changes in the activation of different biological pathways. Somatic single nucleotide variant analysis showed increasing mutational complexity over time. CONCLUSION We demonstrate that RNA-Seq of CTCs could serve as a surrogate biomarker for breast cancer macrometastasis and yield clinically relevant insights into disease biology and clinically actionable targets