2,110 research outputs found

    Calibration Strategy and Efficiency measurement of the Muon Identification procedure at LHCb

    Get PDF
    We present a strategy for calibrating with data the LHCb muon identification procedure and for extracting in-situ the performance. Two main calibration samples are used: the inclusive Jψ→μμJ\psi \to \mu\mu decay as a source of muons and the λ(1115.7)→pπ\lambda(1115.7)\to p\pi decay as a source of hadrons decaying and non-decaying in flight. For each of them we describe the selection, the expected purity and the rates for different running scenarios. The distributions extracted from calibration samples are compared with those obtained from a generic b-inclusive sample. An estimate of the precision that can be reached in the evaluation of the muon identification efficiency and misidentification rate is given as a function of the collected statistics

    The effect of differential galactic winds on the chemical evolution of galaxies

    Full text link
    (Abridged) The aim of this paper is to study the basic equations of the chemical evolution of galaxies with gas flows. We focus on models in which the outflow is differential, namely in which the heavy elements (or some of the heavy elements) can leave the parent galaxy more easily than other chemical species such as H and He. We study the chemical evolution of galaxies in the framework of simple models. This allows us to solve analytically the equations for the evolution of gas masses and metallicities. We find new analytical solutions for various cases in which the effects of winds and infall are taken into account. Differential galactic winds have the effect of reducing the global metallicity of a galaxy, with the amount of reduction increasing with the ejection efficiency of the metals. Abundance ratios are predicted to remain constant throughout the whole evolution of the galaxy, even in the presence of differential winds. One way to change them is by assuming differential winds with different ejection efficiencies for different elements. However, simple models apply only to elements produced on short timescales, namely all by Type II SNe, and therefore large differences in the ejection efficiencies of different metals are unlikely. Variations in abundance ratios such as [O/Fe] in galaxies, without including the Fe production by Type Ia supernovae, can in principle be obtained by assuming an unlikely different efficiency in the loss of O relative to Fe from Type II supernovae. Therefore, we conclude that it is not realistic to ignore Type Ia supernovae and that the delayed production of some chemical elements relative to others (time-delay model) remains the most plausible explanation for the evolution of alpha-elements relative to Fe.Comment: 11 pages, 10 figures, A&A accepte

    Manganese in dwarf spheroidal galaxies

    Get PDF
    We provide manganese abundances (corrected for the effect of the hyperfine structure) for a large number of stars in the dwarf spheroidal galaxies Sculptor and Fornax, and for a smaller number in the Carina and Sextans dSph galaxies. Abundances had already been determined for a number of other elements in these galaxies, including alpha and iron-peak ones, which allowed us to build [Mn/Fe] and [Mn/alpha] versus [Fe/H] diagrams. The Mn abundances imply sub-solar [Mn/Fe] ratios for the stars in all four galaxies examined. In Sculptor, [Mn/Fe] stays roughly constant between [Fe/H]\sim -1.8 and -1.4 and decreases at higher iron abundance. In Fornax, [Mn/Fe] does not vary in any significant way with [Fe/H]. The relation between [Mn/alpha] and [Fe/H] for the dSph galaxies is clearly systematically offset from that for the Milky Way, which reflects the different star formation histories of the respective galaxies. The [Mn/alpha] behavior can be interpreted as a result of the metal-dependent Mn yields of type II and type Ia supernovae. We also computed chemical evolution models for star formation histories matching those determined empirically for Sculptor, Fornax, and Carina, and for the Mn yields of SNe Ia, which were assumed to be either constant or variable with metallicity. The observed [Mn/Fe] versus [Fe/H] relation in Sculptor, Fornax, and Carina can be reproduced only by the chemical evolution models that include a metallicity-dependent Mn yield from the SNe Ia.Comment: 19 pages, 10 figures, accepted for publication in Astronomy & Astrophysic

    A comparison of the s- and r-process element evolution in local dwarf spheroidal galaxies and in the Milky Way

    Full text link
    We study the nucleosynthesis of several neutron capture elements (barium, europium, lanthanum, and yttrium) in local group dwarf spheroidal (dSph) galaxies and in the Milky Way by comparing the evolution of [Ba/Fe], [Eu/Fe], [La/Fe], [Y/Fe], [Ba/Y], [Ba/Eu], [Y/Eu], and [La/Eu] observed in dSph galaxies and in our Galaxy with predictions of detailed chemical evolution models. The models for all dSph galaxies and for the Milky Way are able to reproduce several observational features of these galaxies, such as a series of abundance ratios and the stellar metallicities distributions. The Milky Way model adopts the two-infall scenario, whereas the most important features of the models for the dSph galaxies are the low star-formation rate and the occurrence of intense galactic winds. We predict that the [s-r/Fe] ratios in dSphs are generally different than the corresponding ratios in the Milky Way, at the same [Fe/H] values. This is interpreted as a consequence of the time-delay model coupled with different star formation histories. In particular, the star-formation is less efficient in dSphs than in our Galaxy and it is influenced by strong galactic winds. Our predictions are in very good agreement with the available observational data. The time-delay model for the galactic chemical enrichment coupled with different histories of star formation in different galaxies allow us to succesfully interpret the observed differences in the abundance ratios of s- and r- process elements, as well as of α\alpha-elements in dSphs and in the Milky Way. These differences strongly suggest that the main stellar populations of these galaxies could not have had a common origin and, consequently, that the progenitors of local dSphs might not be the same objects as the building blocks of our Galaxy.Comment: 12 pages, 5 figures, accepted for publication in Astronomy & Astrophysic
    • …