1,144 research outputs found

    Evaluating Portable Parallelization Strategies for Heterogeneous Architectures in High Energy Physics

    Full text link
    High-energy physics (HEP) experiments have developed millions of lines of code over decades that are optimized to run on traditional x86 CPU systems. However, we are seeing a rapidly increasing fraction of floating point computing power in leadership-class computing facilities and traditional data centers coming from new accelerator architectures, such as GPUs. HEP experiments are now faced with the untenable prospect of rewriting millions of lines of x86 CPU code, for the increasingly dominant architectures found in these computational accelerators. This task is made more challenging by the architecture-specific languages and APIs promoted by manufacturers such as NVIDIA, Intel and AMD. Producing multiple, architecture-specific implementations is not a viable scenario, given the available person power and code maintenance issues. The Portable Parallelization Strategies team of the HEP Center for Computational Excellence is investigating the use of Kokkos, SYCL, OpenMP, std::execution::parallel and alpaka as potential portability solutions that promise to execute on multiple architectures from the same source code, using representative use cases from major HEP experiments, including the DUNE experiment of the Long Baseline Neutrino Facility, and the ATLAS and CMS experiments of the Large Hadron Collider. This cross-cutting evaluation of portability solutions using real applications will help inform and guide the HEP community when choosing their software and hardware suites for the next generation of experimental frameworks. We present the outcomes of our studies, including performance metrics, porting challenges, API evaluations, and build system integration.Comment: 18 pages, 9 Figures, 2 Table

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (Ό̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ÂŻ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ÂŻ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),Ό̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.

    An embedding technique to determine ττ backgrounds in proton-proton collision data