292 research outputs found

    Probing Proteinase Active Sites Using Oriented Peptide Mixture Libraries – ADAM-10

    Get PDF
    Oriented Peptide Mixture Libraries can provide a full matrix of preferred and disfavored amino acids at each subsite of an optimal substrate for a new proteinase. This approach is rapid and convenient, requiring only two mixture libraries to complete the analysis. In this paper we demonstrate an extension of this type of analysis, using a focused library employing unnatural amino acids to probe the depth of the S1 position in the catalytic site of the alpha secretase ADAM-10. This analysis indicates that ADAM- 10 will accept amino acids with substantial length and hydrophobicity (e.g. 2- naphthylalanine), but suggests that the S1 site has limitations in the apparent “width” of substituents being presented (e.g. 1-naphthylalanine; gamma branching). A highly selective and efficient substrate for ADAM-10, with a selectivity factor of 380,000 M-1 s -1 , was derived from the predicted consensus substrate. This detailed analysis provides a starting point for the design of inhibitors of this interesting proteinase

    Oxygen and helium in stripped-envelope supernovae

    Get PDF
    We present an analysis of 507 spectra of 173 stripped-envelope (SE) supernovae (SNe) discovered by the untargeted Palomar Transient Factory (PTF) and intermediate PTF (iPTF) surveys. Our sample contains 55 Type IIb SNe (SNe IIb), 45 Type Ib SNe (SNe Ib), 56 Type Ic SNe (SNe Ic), and 17 Type Ib/c SNe (SNe Ib/c). We have compared the SE SN subtypes via measurements of the pseudo-equivalent widths (pEWs) and velocities of the He I λλ5876, 7065 and O I λ7774 absorption lines. Consistent with previous work, we find that SNe Ic show higher pEWs and velocities in O I λ7774 compared to SNe IIb and Ib. The pEWs of the He I λλ5876, 7065 lines are similar in SNe Ib and IIb after maximum light. The He I λλ5876, 7065 velocities at maximum light are higher in SNe Ib compared to SNe IIb. We identify an anticorrelation between the He I λ7065 pEW and O I λ7774 velocity among SNe IIb and Ib. This can be interpreted as a continuum in the amount of He present at the time of explosion. It has been suggested that SNe Ib and Ic have similar amounts of He, and that lower mixing could be responsible for hiding He in SNe Ic. However, our data contradict this mixing hypothesis. The observed difference in the expansion rate of the ejecta around maximum light of SNe Ic (Vm = √2Ek/Mej ≈ 15 000 km s−1) and SNe Ib (Vm ≈ 9000 km s−1) would imply an average He mass difference of ∼1.4 M⊙, if the other explosion parameters are assumed to be unchanged between the SE SN subtypes. We conclude that SNe Ic do not hide He but lose He due to envelope stripping

    Searches for lepton-flavour-violating decays of the Higgs boson into eτ and μτ in \sqrt{s} = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Abstract This paper presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy s s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. Leptonic (τ → ℓνℓντ) and hadronic (τ → hadrons ντ) decays of the τ-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, B B \mathcal{B} (H → eτ) < 0.20% (0.12%) and B B \mathcal{B} (H → μτ ) < 0.18% (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential H → eτ and H → μτ signals. The best-fit branching ratio difference, B B \mathcal{B} (H → μτ) → B B \mathcal{B} (H → eτ), measured with the Symmetry method in the channel where the τ-lepton decays to leptons, is (0.25 ± 0.10)%, compatible with a value of zero within 2.5σ

    Model-independent search for the presence of new physics in events including H → γγ with s \sqrt{s} = 13 TeV pp data recorded by the ATLAS detector at the LHC