32 research outputs found

    Modification of Gesture-Determined-Dynamic Function with Consideration of Margins for Motion Planning of Humanoid Robots

    Full text link
    The gesture-determined-dynamic function (GDDF) offers an effective way to handle the control problems of humanoid robots. Specifically, GDDF is utilized to constrain the movements of dual arms of humanoid robots and steer specific gestures to conduct demanding tasks under certain conditions. However, there is still a deficiency in this scheme. Through experiments, we found that the joints of the dual arms, which can be regarded as the redundant manipulators, could exceed their limits slightly at the joint angle level. The performance straightly depends on the parameters designed beforehand for the GDDF, which causes a lack of adaptability to the practical applications of this method. In this paper, a modified scheme of GDDF with consideration of margins (MGDDF) is proposed. This MGDDF scheme is based on quadratic programming (QP) framework, which is widely applied to solving the redundancy resolution problems of robot arms. Moreover, three margins are introduced in the proposed MGDDF scheme to avoid joint limits. With consideration of these margins, the joints of manipulators of the humanoid robots will not exceed their limits, and the potential damages which might be caused by exceeding limits will be completely avoided. Computer simulations conducted on MATLAB further verify the feasibility and superiority of the proposed MGDDF scheme

    Unsupervised Video Domain Adaptation for Action Recognition: A Disentanglement Perspective

    Full text link
    Unsupervised video domain adaptation is a practical yet challenging task. In this work, for the first time, we tackle it from a disentanglement view. Our key idea is to handle the spatial and temporal domain divergence separately through disentanglement. Specifically, we consider the generation of cross-domain videos from two sets of latent factors, one encoding the static information and another encoding the dynamic information. A Transfer Sequential VAE (TranSVAE) framework is then developed to model such generation. To better serve for adaptation, we propose several objectives to constrain the latent factors. With these constraints, the spatial divergence can be readily removed by disentangling the static domain-specific information out, and the temporal divergence is further reduced from both frame- and video-levels through adversarial learning. Extensive experiments on the UCF-HMDB, Jester, and Epic-Kitchens datasets verify the effectiveness and superiority of TranSVAE compared with several state-of-the-art methods. The code with reproducible results is publicly accessible.Comment: 18 pages, 9 figures, 7 tables. Code at https://github.com/ldkong1205/TranSVA

    RoboBEV: Towards Robust Bird's Eye View Perception under Corruptions

    Full text link
    The recent advances in camera-based bird's eye view (BEV) representation exhibit great potential for in-vehicle 3D perception. Despite the substantial progress achieved on standard benchmarks, the robustness of BEV algorithms has not been thoroughly examined, which is critical for safe operations. To bridge this gap, we introduce RoboBEV, a comprehensive benchmark suite that encompasses eight distinct corruptions, including Bright, Dark, Fog, Snow, Motion Blur, Color Quant, Camera Crash, and Frame Lost. Based on it, we undertake extensive evaluations across a wide range of BEV-based models to understand their resilience and reliability. Our findings indicate a strong correlation between absolute performance on in-distribution and out-of-distribution datasets. Nonetheless, there are considerable variations in relative performance across different approaches. Our experiments further demonstrate that pre-training and depth-free BEV transformation has the potential to enhance out-of-distribution robustness. Additionally, utilizing long and rich temporal information largely helps with robustness. Our findings provide valuable insights for designing future BEV models that can achieve both accuracy and robustness in real-world deployments.Comment: Preprint; 27 pages, 18 figures, 33 tables; Code at https://github.com/Daniel-xsy/RoboBE

    Towards Label-free Scene Understanding by Vision Foundation Models

    Full text link
    Vision foundation models such as Contrastive Vision-Language Pre-training (CLIP) and Segment Anything (SAM) have demonstrated impressive zero-shot performance on image classification and segmentation tasks. However, the incorporation of CLIP and SAM for label-free scene understanding has yet to be explored. In this paper, we investigate the potential of vision foundation models in enabling networks to comprehend 2D and 3D worlds without labelled data. The primary challenge lies in effectively supervising networks under extremely noisy pseudo labels, which are generated by CLIP and further exacerbated during the propagation from the 2D to the 3D domain. To tackle these challenges, we propose a novel Cross-modality Noisy Supervision (CNS) method that leverages the strengths of CLIP and SAM to supervise 2D and 3D networks simultaneously. In particular, we introduce a prediction consistency regularization to co-train 2D and 3D networks, then further impose the networks' latent space consistency using the SAM's robust feature representation. Experiments conducted on diverse indoor and outdoor datasets demonstrate the superior performance of our method in understanding 2D and 3D open environments. Our 2D and 3D network achieves label-free semantic segmentation with 28.4% and 33.5% mIoU on ScanNet, improving 4.7% and 7.9%, respectively. And for nuScenes dataset, our performance is 26.8% with an improvement of 6%. Code will be released (https://github.com/runnanchen/Label-Free-Scene-Understanding)

    RoboDepth: Robust Out-of-Distribution Depth Estimation under Corruptions

    Full text link
    Depth estimation from monocular images is pivotal for real-world visual perception systems. While current learning-based depth estimation models train and test on meticulously curated data, they often overlook out-of-distribution (OoD) situations. Yet, in practical settings -- especially safety-critical ones like autonomous driving -- common corruptions can arise. Addressing this oversight, we introduce a comprehensive robustness test suite, RoboDepth, encompassing 18 corruptions spanning three categories: i) weather and lighting conditions; ii) sensor failures and movement; and iii) data processing anomalies. We subsequently benchmark 42 depth estimation models across indoor and outdoor scenes to assess their resilience to these corruptions. Our findings underscore that, in the absence of a dedicated robustness evaluation framework, many leading depth estimation models may be susceptible to typical corruptions. We delve into design considerations for crafting more robust depth estimation models, touching upon pre-training, augmentation, modality, model capacity, and learning paradigms. We anticipate our benchmark will establish a foundational platform for advancing robust OoD depth estimation.Comment: NeurIPS 2023; 45 pages, 25 figures, 13 tables; Code at https://github.com/ldkong1205/RoboDept

    Segment Any Point Cloud Sequences by Distilling Vision Foundation Models

    Full text link
    Recent advancements in vision foundation models (VFMs) have opened up new possibilities for versatile and efficient visual perception. In this work, we introduce Seal, a novel framework that harnesses VFMs for segmenting diverse automotive point cloud sequences. Seal exhibits three appealing properties: i) Scalability: VFMs are directly distilled into point clouds, obviating the need for annotations in either 2D or 3D during pretraining. ii) Consistency: Spatial and temporal relationships are enforced at both the camera-to-LiDAR and point-to-segment regularization stages, facilitating cross-modal representation learning. iii) Generalizability: Seal enables knowledge transfer in an off-the-shelf manner to downstream tasks involving diverse point clouds, including those from real/synthetic, low/high-resolution, large/small-scale, and clean/corrupted datasets. Extensive experiments conducted on eleven different point cloud datasets showcase the effectiveness and superiority of Seal. Notably, Seal achieves a remarkable 45.0% mIoU on nuScenes after linear probing, surpassing random initialization by 36.9% mIoU and outperforming prior arts by 6.1% mIoU. Moreover, Seal demonstrates significant performance gains over existing methods across 20 different few-shot fine-tuning tasks on all eleven tested point cloud datasets.Comment: NeurIPS 2023 (Spotlight); 37 pages, 16 figures, 15 tables; Code at https://github.com/youquanl/Segment-Any-Point-Clou

    Robo3D: Towards Robust and Reliable 3D Perception against Corruptions

    Full text link
    The robustness of 3D perception systems under natural corruptions from environments and sensors is pivotal for safety-critical applications. Existing large-scale 3D perception datasets often contain data that are meticulously cleaned. Such configurations, however, cannot reflect the reliability of perception models during the deployment stage. In this work, we present Robo3D, the first comprehensive benchmark heading toward probing the robustness of 3D detectors and segmentors under out-of-distribution scenarios against natural corruptions that occur in real-world environments. Specifically, we consider eight corruption types stemming from adversarial weather conditions, external disturbances, and internal sensor failure. We uncover that, although promising results have been progressively achieved on standard benchmarks, state-of-the-art 3D perception models are at risk of being vulnerable to corruptions. We draw key observations on the use of data representations, augmentation schemes, and training strategies, that could severely affect the model's performance. To pursue better robustness, we propose a density-insensitive training framework along with a simple flexible voxelization strategy to enhance the model resiliency. We hope our benchmark and approach could inspire future research in designing more robust and reliable 3D perception models. Our robustness benchmark suite is publicly available.Comment: 33 pages, 26 figures, 26 tables; code at https://github.com/ldkong1205/Robo3D project page at https://ldkong.com/Robo3

    CLIP2Scene: Towards Label-efficient 3D Scene Understanding by CLIP

    Full text link
    Contrastive Language-Image Pre-training (CLIP) achieves promising results in 2D zero-shot and few-shot learning. Despite the impressive performance in 2D, applying CLIP to help the learning in 3D scene understanding has yet to be explored. In this paper, we make the first attempt to investigate how CLIP knowledge benefits 3D scene understanding. We propose CLIP2Scene, a simple yet effective framework that transfers CLIP knowledge from 2D image-text pre-trained models to a 3D point cloud network. We show that the pre-trained 3D network yields impressive performance on various downstream tasks, i.e., annotation-free and fine-tuning with labelled data for semantic segmentation. Specifically, built upon CLIP, we design a Semantic-driven Cross-modal Contrastive Learning framework that pre-trains a 3D network via semantic and spatial-temporal consistency regularization. For the former, we first leverage CLIP's text semantics to select the positive and negative point samples and then employ the contrastive loss to train the 3D network. In terms of the latter, we force the consistency between the temporally coherent point cloud features and their corresponding image features. We conduct experiments on SemanticKITTI, nuScenes, and ScanNet. For the first time, our pre-trained network achieves annotation-free 3D semantic segmentation with 20.8% and 25.08% mIoU on nuScenes and ScanNet, respectively. When fine-tuned with 1% or 100% labelled data, our method significantly outperforms other self-supervised methods, with improvements of 8% and 1% mIoU, respectively. Furthermore, we demonstrate the generalizability for handling cross-domain datasets. Code is publicly available https://github.com/runnanchen/CLIP2Scene.Comment: CVPR 202

    Rethinking Range View Representation for LiDAR Segmentation

    Full text link
    LiDAR segmentation is crucial for autonomous driving perception. Recent trends favor point- or voxel-based methods as they often yield better performance than the traditional range view representation. In this work, we unveil several key factors in building powerful range view models. We observe that the "many-to-one" mapping, semantic incoherence, and shape deformation are possible impediments against effective learning from range view projections. We present RangeFormer -- a full-cycle framework comprising novel designs across network architecture, data augmentation, and post-processing -- that better handles the learning and processing of LiDAR point clouds from the range view. We further introduce a Scalable Training from Range view (STR) strategy that trains on arbitrary low-resolution 2D range images, while still maintaining satisfactory 3D segmentation accuracy. We show that, for the first time, a range view method is able to surpass the point, voxel, and multi-view fusion counterparts in the competing LiDAR semantic and panoptic segmentation benchmarks, i.e., SemanticKITTI, nuScenes, and ScribbleKITTI.Comment: ICCV 2023; 24 pages, 10 figures, 14 tables; Webpage at https://ldkong.com/RangeForme
    corecore