389 research outputs found

    Endogenous small intestinal microbiome determinants of transient colonisation efficiency by bacteria from fermented dairy products : a randomised controlled trial

    No full text
    Background: The effects of fermented food consumption on the small intestine microbiome and its role on host homeostasis are largely uncharacterised as our knowledge on intestinal microbiota relies mainly on faecal samples analysis. We investigated changes in small intestinal microbial composition and functionality, short chain fatty acid (SCFA) profiles, and on gastro-intestinal (GI) permeability in ileostomy subjects upon the consumption of fermented milk products. Results: We report the results from a randomised, cross-over, explorative study where 16 ileostomy subjects underwent 3, 2-week intervention periods. In each period, they consumed either milk fermented by Lacticaseibacillus rhamnosus CNCM I-3690, or milk fermented by Streptococcus thermophilus CNCM I-1630 and Lactobacillus delbrueckii subsp. bulgaricus CNCM I-1519, or a chemically acidified milk (placebo) daily. We performed metataxonomic, metatranscriptomic analysis, and SCFA profiling of ileostomy effluents as well as a sugar permeability test to investigate the microbiome impact of these interventions and their potential effect on mucosal barrier function. Consumption of the intervention products impacted the overall small intestinal microbiome composition and functionality, mainly due to the introduction of the product-derived bacteria that reach in several samples 50% of the total microbial community. The interventions did not affect the SCFA levels in ileostoma effluent, or gastro-intestinal permeability and the effects on the endogenous microbial community were negligible. The impact on microbiome composition was highly personalised, and we identified the poorly characterised bacterial family, Peptostreptococcaceae, to be positively associated with a low abundance of the ingested bacteria. Activity profiling of the microbiota revealed that carbon- versus amino acid-derived energy metabolism of the endogenous microbiome could be responsible for the individual-specific intervention effects on the small intestine microbiome composition and function, reflected also on urine microbial metabolites generated through proteolytic fermentation. Conclusions: The ingested bacteria are the main drivers of the intervention effect on the small intestinal microbiota composition. Their transient abundance level is highly personalised and influenced by the energy metabolism of the ecosystem that is reflected by its microbial composition (http://www.clinicaltrials.gov, ID NCT NCT02920294). [MediaObject not available: see fulltext.]

    The Pleiotropic Effects of Carbohydrate-Mediated Growth Rate Modifications in Bifidobacterium longum NCC 2705

    No full text
    Bifidobacteria are saccharolytic bacteria that are able to metabolize a relatively large range of carbohydrates through their unique central carbon metabolism known as the “bifid-shunt”. Carbohydrates have been shown to modulate the growth rate of bifidobacteria, but unlike for other genera (e.g., E. coli or L. lactis), the impact it may have on the overall physiology of the bacteria has not been studied in detail to date. Using glucose and galactose as model substrates in Bifidobacterium longum NCC 2705, we established that the strain displayed fast and slow growth rates on those carbohydrates, respectively. We show that these differential growth conditions are accompanied by global transcriptional changes and adjustments of central carbon fluxes. In addition, when grown on galactose, NCC 2705 cells were significantly smaller, exhibited an expanded capacity to import and metabolized different sugars and displayed an increased acid-stress resistance, a phenotypic signature associated with generalized fitness. We predict that part of the observed adaptation is regulated by the previously described bifidobacterial global transcriptional regulator AraQ, which we propose to reflect a catabolite-repression-like response in B. longum. With this manuscript, we demonstrate that not only growth rate but also various physiological characteristics of B. longum NCC 2705 are responsive to the carbon source used for growth, which is relevant in the context of its lifestyle in the human infant gut where galactose-containing oligosaccharides are prominent

    Early feeding leads to molecular maturation of the gut mucosal immune system in suckling piglets

    Get PDF
    IntroductionDiet-microbiota-host interactions are increasingly studied to comprehend their implications in host metabolism and overall health. Keeping in mind the importance of early life programming in shaping intestinal mucosal development, the pre-weaning period can be utilised to understand these interactions in suckling piglets. The objective of this study was to investigate the consequences of early life feeding on the time-resolved mucosal transcriptional program as well as mucosal morphology.MethodsA customised fibrous feed was provided to piglets (early-fed or EF group; 7 litters) from five days of age until weaning (29 days of age) in addition to sow’s milk, whereas control piglets (CON; 6 litters) suckled mother’s milk only. Rectal swabs, intestinal content, and mucosal tissues (jejunum, colon) were obtained pre- and post-weaning for microbiota analysis (16S amplicon sequencing) and host transcriptome analysis (RNA sequencing).ResultsEarly feeding accelerated both microbiota colonisation as well as host transcriptome, towards a more “mature state”, with a more pronounced response in colon compared to jejunum. Early feeding elicited the largest impact on the colon transcriptome just before weaning (compared to post-weaning time-points), exemplified by the modulation of genes involved in cholesterol and energy metabolism and immune response. The transcriptional impact of early feeding persisted during the first days post-weaning and was highlighted by a stronger mucosal response to the weaning stress, via pronounced activation of barrier repair reactions, which is a combination of immune activation, epithelial migration and “wound-repair” like processes, compared to the CON piglets.DiscussionOur study demonstrates the potential of early life nutrition in neonatal piglets as a means to support their intestinal development during the suckling period, and to improve adaptation during the weaning transition

    Omics and imaging combinatorial approach reveals butyrate-induced inflammatory effects in the zebrafish gut

    No full text
    Background: Prebiotic feed additives aim to improve gut health by influencing the microbiota and the gut barrier. Most studies on feed additives concentrate on one or two (monodisciplinary) outcome parameters, such as immunity, growth, microbiota or intestinal architecture. A combinatorial and comprehensive approach to disclose the complex and multifaceted effects of feed additives is needed to understand their underlying mechanisms before making health benefit claims. Here, we used juvenile zebrafish as a model species to study effects of feed additives by integrating gut microbiota composition data and host gut transcriptomics with high-throughput quantitative histological analysis. Zebrafish received either control, sodium butyrate or saponin-supplemented feed. Butyrate-derived components such as butyric acid or sodium butyrate have been widely used in animal feeds due to their immunostimulant properties, thereby supporting intestinal health. Soy saponin is an antinutritional factor from soybean meal that promotes inflammation due to its amphipathic nature. Results: We observed distinct microbial profiles associated with each diet, discovering that butyrate (and saponin to a lesser extent) affected gut microbial composition by reducing the degree of community-structure (co-occurrence network analysis) compared to controls. Analogously, butyrate and saponin supplementation impacted the transcription of numerous canonical pathways compared to control-fed fish. For example, both butyrate and saponin increased the expression of genes associated with immune response and inflammatory response, as well as oxidoreductase activity, compared to controls. Furthermore, butyrate decreased the expression of genes associated with histone modification, mitotic processes and G-coupled receptor activity. High-throughput quantitative histological analysis depicted an increase of eosinophils and rodlet cells in the gut tissue of fish receiving butyrate after one week of feeding and a depletion of mucus-producing cells after 3 weeks of feeding this diet. Combination of all datasets indicated that in juvenile zebrafish, butyrate supplementation increases the immune and the inflammatory response to a greater extent than the established inflammation-inducing anti-nutritional factor saponin. Such comprehensive analysis was supplemented by in vivo imaging of neutrophil and macrophage transgenic reporter zebrafish (mpeg1:mCherry/mpx:eGFPi114) larvae. Upon exposure to butyrate and saponin, these larvae displayed a dose-dependent increase of neutrophils and macrophages in the gut area. Conclusion: The omics and imaging combinatorial approach provided an integrated evaluation of the effect of butyrate on fish gut health and unraveled inflammatory-like features not previously reported that question the usage of butyrate supplementation to enhance fish gut health under basal conditions. The zebrafish model, due to its unique advantages, provides researchers with an invaluable tool to investigate effects of feed components on fish gut health throughout life

    Data underlying the publication: "A mammalian commensal of the oropharyngeal cavity produces antibiotic and antiviral valinomycin in vivo"

    No full text
    Around weaning, piglets are susceptible to infection by bacterial pathogens, leading to increased morbidity and mortality. We identified isolates of Rothia nasisuis in the upper respiratory tract of weaned healthy piglets that produce valinomycin in vitro and in vivo via a giant multimodule non-ribosomal peptide synthase (NRPS) enzyme complex. Valinomycin is an antiviral and antibiotic ionophore that shuttles potassium ions across membranes and is capable of inflammasome activation and apoptosis in LPS-primed macrophages. R. nasisuis inhibited growth of Streptococcus and Rothia species inhabiting the same niche. To investigate the potential for the valinomycin-producing Rothia nasisuis strain to colonize new-born piglets we performed a colonization study in newborn litters of piglets. Briefly, the newborn piglets of 3 sows farrowing on the same day were randomized between the three sows to avoid genetic bias in the experiment. The sows were housed in separate maternity pens and the piglets marked so they could be identified during the study. 9 of the 12 piglets nursed by sows A and B (further referred to as litters A and B) were orally administered approximately 10exp9 CFU of valinomycin-producing R. nasisuis, using a syringe on d2, d19 and d27 after birth. Three 3 piglets in litters A and B were not inoculated with R. nasisuis to see if they became colonized by horizontal transfer. As a control group all the piglets housed with the sow C (further referred to as litter C) were not inoculated with R. nasisuis

    Effects of a wholegrain-rich diet on markers of colonic fermentation and bowel function and their associations with the gut microbiome:a randomised controlled cross-over trial

    No full text
    Background: Diets rich in whole grains are associated with health benefits. Yet, it remains unclear whether the benefits are mediated by changes in gut function and fermentation.Objective: We explored the effects of whole-grain vs. refined-grain diets on markers of colonic fermentation and bowel function, as well as their associations with the gut microbiome.Methods: Fifty overweight individuals with increased metabolic risk and a high habitual intake of whole grains (~69 g/day) completed a randomised cross-over trial with two 8-week dietary intervention periods comprising a whole-grain diet (≥75 g/day) and a refined-grain diet (&lt;10 g/day), separated by a washout period of ≥6 weeks. A range of markers of colonic fermentation and bowel function were assessed before and after each intervention.Results: The whole-grain diet increased the levels of faecal butyrate (p = 0.015) and caproate (p = 0.013) compared to the refined-grain diet. No changes in other faecal SCFA, BCFA or urinary levels of microbial-derived proteolytic markers between the two interventions were observed. Similarly, faecal pH remained unchanged. Faecal pH did however increase (p = 0.030) after the refined-grain diet compared to the baseline. Stool frequency was lower at the end of the refined-grain period compared to the end of the whole-grain diet (p = 0.001). No difference in faecal water content was observed between the intervention periods, however, faecal water content increased following the whole-grain period compared to the baseline (p = 0.007). Dry stool energy density was unaffected by the dietary interventions. Nevertheless, it explained 4.7% of the gut microbiome variation at the end of the refined-grain diet, while faecal pH and colonic transit time explained 4.3 and 5%, respectively. Several butyrate-producers (e.g., Faecalibacterium, Roseburia, Butyriciococcus) were inversely associated with colonic transit time and/or faecal pH, while the mucin-degraders Akkermansia and Ruminococcaceae showed the opposite association.Conclusion: Compared with the refined-grain diet, the whole-grain diet increased faecal butyrate and caproate concentrations as well as stool frequency, emphasising that differences between whole and refined grains affect both colonic fermentation and bowel habits.<br/

    L. rhamnosus CNCM I-3690 survival, adaptation, and small bowel microbiome impact in human

    No full text
    ABSTRACTFermented foods and beverages are a significant source of dietary bacteria that enter the gastrointestinal (GI) tract. However, little is known about how these microbes survive and adapt to the small intestinal environment. Colony-forming units (CFU) enumeration and viability qPCR of Lacticaseibacillus rhamnosus CNCM I-3690 in the ileal effluent of 10 ileostomy subjects during 12-h post consumption of a dairy product fermented with this strain demonstrated the high level of survival of this strain during human small intestine passage. Metatranscriptome analyses revealed the in situ transcriptome of L. rhamnosus in the small intestine, which was contrasted with transcriptome data obtained from in vitro cultivation. These comparative analyses revealed substantial metabolic adaptations of L. rhamnosus during small intestine transit, including adjustments of carbohydrate metabolism, surface-protein expression, and translation machinery. The prominent presence of L. rhamnosus in the effluent samples did not elicit an appreciable effect on the composition of the endogenous small intestine microbiome, but significantly altered the ecosystem’s overall activity profile, particularly of pathways associated with carbohydrate metabolism. Strikingly, two of the previously recognized gut-brain metabolic modules expressed in situ by L. rhamnosus (inositol degradation and glutamate synthesis II) are among the most dominantly enriched activities in the ecosystem’s activity profile. This study establishes the survival capacity of L. rhamnosus in the human small intestine and highlights its functional adjustment in situ, which we postulate to play a role in the probiotic effects associated with this strain

    The growth-survival trade-off is hard-wired in the Lactococcus lactis gene regulation network

    No full text
    Most microbes reside in oligotrophic environments for extended periods of time, requiring survival strategies that maintain proliferative capacity. We demonstrate that the non-spore-forming Lactococcus lactis KF147 progressively activates the expression of stress-associated functions in response to the declining growth rate elicited by prolonged retentostat cultivation, which coincides with up to 104-fold increased stress tolerance. Our findings provide a quantified view of the transcription and stress-tolerance adaptations underlying the growth-survival trade-off in L. lactis, and exemplify the hard-wiring of this trade-off in the lactococcal gene regulation network

    Engineering lactococci for increased functionality

    No full text
    Various strategies have been employed to engineer lactic acid bacteria (LAB) to improve their functionality as cell-factory or in food fermentation applications. Lactococcus lactis has long served as a paradigm organism in genetic engineering of the LAB, and the analysis of gene-specific mutant strains and/or strains overexpressing specific functions has been crucial for our increased insight in gene-regulation and metabolism of these industrially important microbes. However, application of engineered strains in food fermentations is limited by the lack of consumer acceptance of genetically engineered foods. This has led to a renewed interest in natural mechanisms of gene transfer and has stimulated the use of experimental evolution to increase specific LAB functionalities