43 research outputs found

    Arsenic contamination in groundwater : some analytical considerations

    Get PDF
    For countries such as Bangladesh with a significant groundwater arsenic problem, there is an urgent need for the arsenic-contaminated wells to be identified as soon as possible and for appropriate action to be taken. This will involve the testing of a large number of wells, potentially up to 11 million in Bangladesh alone. Field-test kits offer the only practical way forward in the timescale required. The classic field method for detecting arsenic (the ‘Gutzeit’ method) is based on the reaction of arsine gas with mercuric bromide and remains the best practical approach. It can in principle achieve a detection limit of about 10 μg l−1 by visual comparison of the coloured stain against a colour calibration chart. A more objective result can be achieved when the colour is measured by an electronic instrument. Attention has to be paid to interferences mainly from hydrogen sulfide. Due to analytical errors, both from the field-test kits and from laboratory analysis, some misclassification of wells is inevitable, even under ideal conditions. The extent of misclassification depends on the magnitude of the errors of analysis and the frequency distribution of arsenic observed, but is in principle predictable before an extensive survey is undertaken. For a country with an arsenic distribution similar to that of Bangladesh, providing care is taken to avoid sources of bias during testing, modern field-test kits should be able to reduce this misclassification to under 5% overall

    Arsenic in groundwater and the environment

    Get PDF
    Awareness of the problems associated with arsenic in drinking water and the environment has grown significantly over the last two decades or so and today an enormous literature exists documenting its occurrence, behaviour and impacts in many places across the globe. The mobilisation of arsenic in the environment occurs through a complex combination of natural biogeochemical reactions and human interactions. Most recognised problems are generated by mobilisation and transport under natural conditions, but mobilisation has also been caused, or exacerbated, by mining, fossil-fuel combustion and use of synthetic arsenical compounds (pesticides, herbicides, crop desiccants and arsenic-based additives in livestock feed). Arsenical pesticides and herbicides have been used much less over the last few decades, and more recent restrictions have been imposed on the use of arsenic in wood preservation (e.g. European Communities’ Directive 2003/2/EC), but the legacy of such sources may still pose a localised threat to the environment

    Molybdenum in natural waters: a review of occurrence, distributions and controls

    Get PDF
    Molybdenum is an essential trace element for human, animal and plant health and has played an important part in the evolution of life on earth. Nonetheless, exposure to the element can be harmful and although the evidence for symptoms in humans is sparse, it has been linked with a number of health conditions in animal models. Molybdenum is present in trace quantities (1–10 mg/kg) in most rocks and soils and at concentrations less than, and often orders of magnitude less than, 10 μg/L in most freshwaters. It is the most abundant transition metal in open seawater (10 μg Mo/L) owing to the dominance, and low chemical reactivity, of the molybdate ion (MoO42-). The 2011 WHO Guidelines for Drinking-Water Quality (fourth edition) advised a health-based value of 70 μg/L for Mo but this is no longer promulgated as a formal guideline value as WHO consider such concentrations to be rarely found in drinking water. This is indeed usually the case, but there are instances where currently-used drinking waters do exceed 70 μg Mo/L. We therefore recommend more routine measurement of Mo in water, at least on a reconnaissance scale, in order to improve knowledge on occurrence in water used for potable supply. Where multi-element analytical procedures are already used (e.g. ICP-MS), the marginal cost of adding Mo to the list of elements to be analysed should not be great. We have reviewed nine areas in the world where high concentrations of Mo in freshwater, and in some cases drinking water, have been found: Argentina, Jordan, Qatar, Ethiopia, UK, USA (three) and Chile. These represent a range of geochemical environments. A common theme of the high-Mo occurrences is (i) oxic, alkaline conditions where, as for seawater, the Mo occurs as the stable molybdate ion; groundwater in oxic, alkaline conditions within volcanogenic sediments can have exceptionally high Mo concentrations (up to hundreds of μg/L) where felsic volcanic ash is present; (ii) anoxic, non-sulphidic waters where Mo can be released to solution by reductive dissolution of Mn and Fe oxides or by release from degradation of organic matter, notably within high-Mo organic-rich muds, black shales or oil shales; or (iii) surface waters or groundwater impacted by metal sulphide mining and/or mineralisation, in particular occurrences of porphyry deposits. Under such conditions, Mo concentrations can reach several tens to several hundreds of μg/L and while not all are otherwise suitable for drinking water, some are. Much of the basic geochemistry of Mo in oxic natural environments is now quite well understood. Critically, its behaviour is redox-sensitive like its near neighbours in the Periodic Table, W and V. At the near-neutral pH values characteristic of most natural waters, Mo is rather weakly sorbed and formation of Mo minerals is either not indicated or is extremely slow. Molybdenum becomes less mobile when converted to thiomolybdates under the strongly reducing conditions found in some present-day ocean basins (e.g. the Black Sea), fjords, stratified lakes and confined aquifers. This leads to concentrations of around 100 mg Mo/kg or more in black shales and other organic-rich mudstones. However, despite the many studies of these water bodies and the importance of Mo as a palaeoredox indicator, the mechanism of the highly-efficient and diagnostic scavenging of Mo in euxinic (H2S-rich) waters remains uncertain. Possibilities include the formation of an as yet unidentified Mo-Fe-S mineral or solid solution, or the scavenging by some pre-existing solid such as a sulphide or oxide mineral, or organic matter. The possible role of dispersed and reduced natural organic matter has become more prominent in recent years but this has proven difficult to quantify and the mechanism of binding is poorly understood. Molybdenum isotope studies now play an important role in constraining reaction pathways. At a more fundamental level, there is a lack of up-to-date thermodynamic and kinetic data for many of the reactions of importance for Mo in the natural environment and this limits the ability of current geochemical models to predict its fate and transport. This is particularly true for the strongly reducing conditions where Mo partitions to the solid phase, leading to the formation of the Mo-rich shales. Even the existence of reduced aqueous Mo species (e.g. in the Mo(V) and Mo(III) oxidation states) in natural waters is uncertain. These uncertainties will only be resolved with focused laboratory experiments using the benefits of modern instrumentation, combined where necessary with supporting molecular dynamics calculations. The mobility of Mo in aqueous systems has to date received far more attention in the marine than the freshwater setting. The value of Mo speciation as an indicator of redox conditions and of stable-isotopic variations as a tracer, can have more value in the arena of environment and health, and studies of the element's mobility in aqueous systems can be useful for themes varying from radioactive waste disposal, sustainability of unconventional hydrocarbon exploitation and wider surficial pollution

    Phytoestrogens in Human Pregnancy

    Get PDF
    Background. The hormonal milieu associated with pregnancy has become a focus of interest owing to potential links with the developmental origins of health and disease. Phytoestrogens are hormonally active plant-derived chemicals that may have an impact on human reproductive processes. However, developmental exposure to phytoestrogens has not been well characterized and thus our objective was to quantify phytoestrogen exposure during pregnancy and lactation. Methods. Women in the second trimester of pregnancy entered the study during counseling for prenatal genetic information. Women who had an indication for a genetic amniocentesis on the basis of late maternal age were approached for inclusion. They completed an environmental questionnaire; a sample of amniotic fluid was collected for karyotype, blood was collected from women during pregnancy and at birth, from the umbilical cord and breast milk. Samples were tested for the presence of daidzein and genistein by GC Mass Spectroscopy. Findings. Phytoestrogens are commonly found in pregnant women's serum and amniotic fluid during pregnancy. There is a sex difference in the concentrations with higher levels in amniotic fluid containing female fetuses. This difference was not present in maternal serum. Soy ingestion increases amniotic fluid phytoestrogen concentrations in female and male fetuses. The presence and concentrations of phytoestrogens did not differ in relation to common pregnancy complications or preexisting infertility

    Proton binding by groundwater fulvic acids of different age, origins, and structure modeled with the model V and NICA-Donnan model

    Get PDF
    The proton binding properties of four fulvic acids from pristine groundwater and leachate-polluted groundwater were measured at four different ionic strengths (0.005−0.12 M) and modeled by the Model V and the NICA−Donnan model in order to evaluate the necessity of detailed proton binding parameters for groundwater fulvic acids. The proton binding parameters derived from the various fulvic acids were very similar, and on the basis of these parameters, it was not possible to distinguish between pristine and polluted groundwater. Normalization of the proton charge density by the proton charge density at pH 7 for each fulvic acid made all four fulvic acids regress to the same curve. The effects of varying the proton binding parameters were evaluated by simulating cadmium complexation using sets of proton binding parameters for the four fulvic acids and default sets of proton binding parameters available in the models WHAM (based on Model V) and Ecosat (based on NICA−Donnan). The Model V was rather indifferent with respect to specific characteristics of fulvic acids proton binding, and for most practical uses, the default values available in the model can be used. The NICA−Donnan model resulted in larger deviations between simulations based on default values and specific parameters. However, the NICA−Donnan database is still rather limited, and specific proton binding parameters should be used until the database providing default values has been extended

    A case-control study of GST polymorphisms and arsenic related skin lesions

    Get PDF
    BACKGROUND: Polymorphisms in GSTT1, GSTM1 and GSTP1 impact detoxification of carcinogens by GSTs and have been reported to increase susceptibility to environmentally related health outcomes. Individual factors in arsenic biotransformation may influence disease susceptibility. GST activity is involved in the metabolism of endogenous and exogenous compounds, including catalyzing the formation of arsenic-GSH conjugates. METHODS: We investigated whether polymorphisms in GSTT1, GSTP1 and GSTM1 were associated with risk of skin lesions and whether these polymorphisms modify the relationship between drinking water arsenic exposure and skin lesions in a case control study of 1200 subjects frequency matched on age and gender in community clinics in Pabna, Bangladesh in 2001–2002. RESULTS AND DISCUSSION: GSTT1 homozygous wildtype status was associated with increased odds of skin lesions compared to the null status (OR1.56 95% CI 1.10–2.19). The GSTP1 GG polymorphism was associated with greater odds of skin lesions compared to GSTP1 AA, (OR 1.86 (95%CI 1.15–3.00). No evidence of effect modification by GSTT1, GSTM1 or GSTP1 polymorphisms on the association between arsenic exposure and skin lesions was detected. CONCLUSION: GSTT1 wildtype and GSTP1 GG are associated with increased risk of skin lesions

    Predominance and mineral stability diagrams revisited

    Get PDF
    Predominance and mineral stability diagrams are most useful if they are based on a full chemical speciation. The diagrams can then include a wide range of reactions of importance in environmental chemistry including adsorption and ion exchange reactions. They can also take into account the possible interactions between a large number of components and are able to model changes at a fixed total concentration of each component rather than under the commonly used but less realistic assumption of a fixed activity. A “hunt-and-track” algorithm is described that enables predominance and mineral stability diagrams to be constructed using any general-purpose speciation program. Examples are given using PHREEQC and Orchestra

    Unsaturated zone pore water chemistry and the edge effect in a beech forest in Southern England

    Get PDF
    Twenty one pore water chemistry profiles were obtained for a range of inorganic solutes from the Chalk unsaturated zone in or adjacent to Black Wood, a 2.4 km2 mature beech wood in southern England. The depth sampled was normally 10 m, but some boreholes were shallower and one was deeper (30 m). Towards the centre of the wood, average pore water concentrations were : Cl (17-25 mg l-1), SO4 (20-40 mg l-1) and NO3-N (5-10 mg l-1). In small clearings within the wood, concentrations of Cl (12-20 mg l-1) and SO4 (27-36 mg l-1) were somewhat lower but the average concentration of nitrate-N was higher (16 mg l-1). Pore water chloride and nitrate concentrations under a small area of ash were lower than under the beech. There was a significant increase in the concentration of a number of solutes, especially Cl, Na, Mg and SO4, close to the exposed western edge of Black Wood. This 'edge effect' decreased exponentially with a half distance of about 9 m. The effect was less consistent at the more sheltered eastern edge. Average pore water concentrations of up to 310 mg l-1 Cl and 312 mg l-1 SO4 were found at the western edge. Paradoxically, close to the western edge pore water nitrate concentrations were often very low, frequently less than I mg l-1 NO3-N. Using the parameters derived from a simple exponential model of the Black Wood data, calculations suggested that the edge effect would lead to significantly enhanced Cl and SO4 pore water concentrations in forests of a few hectares, a size typical of many of those currently being planted. The consistently lower moisture content of the Chalk close to the forest edges suggested that groundwater recharge may have been lower there
    corecore