5 research outputs found

    A Novel CNN-Based Framework for Classification of Signal Quality and Sleep Position from a Capacitive ECG Measurement

    No full text
    The further exploration of the capacitive ECG (cECG) is hindered by frequent fluctuations in signal quality from body movement and changes in sleep position. The processing framework must be fundamentally adapted to make full use of this signal. Therefore, we propose a new signal-processing framework that determines the signal quality for short signal segments (2 and 4 seconds) using a multi-class classification model (qua_model) based on a convolutional neural network (CNN). We built another independent deep CNN classifier (pos_model) to classify the sleep position. In the validation, 12 subjects were recruited for a 30-minute experiment, which required the subjects to lie on a bed in different sleeping positions. The short segments, classified as clear (C1 class) by the qua_model, were used to determine sleep positions with the pos_model. In 10-fold cross-validation, the qua_model for signals of 4-second length could recognize the signal of the C1 class at a 0.99 precision and a 0.99 recall; the pos_model could recognize the supine sleep position, the left, and right lateral sleep positions at a 0.99 averaged precision and a 0.99 averaged recall. Given the amount of data accumulated per night and the instability in the signal quality, this fully automatic processing framework is indispensable for a personal healthcare system. Therefore, this study could serve as an important step for cECG technique trying to explore the cECG for unconstrained heart monitoring

    Discussion of Cuffless Blood Pressure Prediction Using Plethysmograph Based on a Longitudinal Experiment: Is the Individual Model Necessary?

    No full text
    Using the Plethysmograph (PPG) signal to estimate blood pressure (BP) is attractive given the convenience and possibility of continuous measurement. However, due to the personal differences and the insufficiency of data, the dilemma between the accuracy for a small dataset and the robustness as a general method remains. To this end, we scrutinized the whole pipeline from the feature selection to regression model construction based on a one-month experiment with 11 subjects. By constructing the explanatory features consisting of five general PPG waveform features that do not require the identification of dicrotic notch and diastolic peak and the heart rate, three regression models, which are partial least square, local weighted partial least square, and Gaussian Process model, were built to reflect the underlying assumption about the nature of the fitting problem. By comparing the regression models, it can be confirmed that an individual Gaussian Process model attains the best results with 5.1 mmHg and 4.6 mmHg mean absolute error for SBP and DBP and 6.2 mmHg and 5.4 mmHg standard deviation for SBP and DBP. Moreover, the results of the individual models are significantly better than the generalized model built with the data of all subjects

    A Real-Time Portable IoT System for Telework Tracking

    Get PDF
    Telework has become a universal working style under the background of COVID-19. With the increased time of working at home, problems, such as lack of physical activities and prolonged sedentary behavior become more prominent. In this situation, a self-managing working pattern regulation may be the most practical way to maintain worker's well-being. To this end, this paper validated the idea of using an Internet of Things (IoT) system (a smartphone and the accompanying smartwatch) to monitor the working status in real-time so as to record the working pattern and nudge the user to have a behavior change. By using the accelerometer and gyroscope enclosed in the smartwatch worn on the right wrist, nine-channel data streams of the two sensors were sent to the paired smartphone for data preprocessing, and action recognition in real time. By considering the cooperativity and orthogonality of the data streams, a shallow convolutional neural network (CNN) model was constructed to recognize the working status from a common working routine. As preliminary research, the results of the CNN model show accurate performance [5-fold cross-validation: 0.97 recall and 0.98 precision; leave-one-out validation: 0.95 recall and 0.94 precision; (support vector machine (SVM): 0.89 recall and 0.90 precision; random forest: 0.95 recall and 0.93 precision)] for the recognition of working status, suggesting the feasibility of this fully online method. Although further validation in a more realistic working scenario should be conducted for this method, this proof-of-concept study clarifies the prospect of a user-friendly online working tracking system. With a tailored working pattern guidance, this method is expected to contribute to the workers' wellness not only during the COVID-19 pandemic but also take effect in the post-COVID-19 era
    corecore