43 research outputs found

    LEARNING FROM SMALL FAILURES: ROLE OF RELATEDNESS, FAMILIARITY, AND STRUCTURE OF KNOWLEDGE BASE

    Get PDF
    Does the approach that firms adopt in their search for solutions influence their ability to learn from failures? Does the structure of a firm's knowledge base affect learning from failures? Recent research has begun to explore the learning from small failures in experimentation. However, failures may differ in terms of learning opportunities they provide, and presence of learning opportunities may not result in better performance. In this dissertation, I focus on small failures in experimentation. I examine two aspects of search behavior. First, I explore relatedness of failures in a firm's knowledge base and examine how failures of varying degree of relatedness can lead to heterogeneous learning outcomes. Second, I investigate whether familiarity of knowledge and knowledge elements associated with failures has an effect on learning from these failures. Finally, presence of learning opportunities may not always result in increased performance, and therefore examination of factors that moderate a firm's ability to implement learning from failures is important. I argue that decomposability of a firm's knowledge base plays a crucial role in facilitating learning from failures. With the help of data on patents and their expiration for 76 pharmaceutical firms, I show that relatedness of failures has positive effect on a firm's R&D performance, but beyond a certain point increase in relatedness hurts the R&D performance. Also, failed experiments that use more familiar knowledge and knowledge elements have negative effect on a firm's R&D performance. Finally, decomposability of a firm's knowledge base moderates the above relationships such that nearly decomposable knowledge base facilitates the learning more than fully decomposable or integrated knowledge bases. By studying the role of different characteristics of small failures in learning and structure of a firm's knowledge base in incorporating that learning, this dissertation increases our understanding of mechanisms underlying R&D processes in pharmaceutical firms.Doctor of Philosoph

    Estimation of Gestational Age, Using Neonatal Anthropometry: A Cross-sectional Study in India

    Get PDF
    Prematurity is a significant contributor to neonatal mortality in India. Conventionally, assessment of gestational age of newborns is based on New Ballard Technique, for which a paediatric specialist is needed. Anthropometry of the newborn, especially birthweight, has been used in the past to predict the gestational age of the neonate in peripheral health facilities where a trained paediatrician is often not available. We aimed to determine if neonatal anthropometric parameters, viz. birthweight, crown heel-length, head-circumference, mid-upper arm-circumference, lower segment-length, foot-length, umbilical nipple distance, calf-circumference, intermammary distance, and hand-length, can reliably predict the gestational age. The study also aimed to derive an equation for the same. We also assessed if these neonatal anthropometric parameters had a better prediction of gestational age when used in combination compared to individual parameters. We evaluated 1,000 newborns in a cross-sectional study conducted in Guru Teg Bahadur Hospital in Delhi. Detailed anthropometric estimation of the neonates was done within 48 hours after birth, using standard techniques. Gestational age was estimated using New Ballard Scoring. Out of 1,250 consecutive neonates, 1,000 were included in the study. Of them, 800 randomly-selected newborns were used in devising the model, and the remaining 200 newborns were used in validating the final model. Quadratic regression analysis using stepwise selection was used in building the predictive model. Birthweight (R=0.72), head-circumference (R=0.60), and mid-upper arm-circumference (R=0.67) were found highly correlated with gestation. The final equation to assess gestational age was as follows: Gestational age (weeks)=5.437 7W\u20130.781 7W2+2.815 7HC\u20130.041 7HC2+0.285 7MUAC\u201322.745 where W=Weight, HC=Head-circumference and MUAC=Mid-upper arm-circumference; Adjusted R=0.76. On validation, the predictability of this equation is 46% (\ub11 week), 75.5% (\ub12 weeks), and 91.5% (\ub13 weeks). This mathematical model may be used in identifying preterm neonates

    Socio-Demographic and Clinical Profile of Health Care Workers Diagnosed for COVID-19 by Truenat at a Tertiary Care COVID Hospital

    Get PDF
    Background: In December 2019, in Wuhan, China; a new coronavirus emerged that had not been previously identified in humans. Hence is crucial to characterize the infection risk among infected health care workers (HCWs), being responsible for secondary transmission to patients, and others. Objectives: The current study aimed to assess the disease burden among the front-line warriors and efficiently planned the preventive and management strategies for such infections. Methods: HCWs with clinical suspicion of COVID-19 infection, who reported to Fever Clinic for possible diagnosis by Truenat testing, were enrolled through a self-reporting Risk Assessment form. An oropharyngeal swab was subjected to Truenat testing based on the principle of Real time reverse transcription polymerase chain reaction (RT-PCR). Results: Doctors comprised 60% of our HCWs. Eighty-three percent of the HCWs under study reported either the presence of BCG scar or gave a history of BCG immunization at birth. The maximum number of HCWs (29.16%) took Hydroxychloroquine prophylaxis for four weeks. Seventy-four percent of the HCWs affirmed the use of personal protective equipment (PPE) at the time of exposure. The most common mode of infection reported was the exposure to COVID-19 patients. Fever was the most common reported symptom. Truenat was positive in 9 of 100 HCWs who were tested, giving an infection rate of 9%. Conclusion: The study provides insights into the burden of COVID-19 infection among HCWs, and guides us to evaluate and plan our preventive measures and management strategies for such infections

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation

    Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress

    Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. Methods The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODErn), to generate cause fractions and cause specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised. Findings At the broadest grouping of causes of death (Level 1), non-communicable diseases (NC Ds) comprised the greatest fraction of deaths, contributing to 73.4% (95% uncertainty interval [UI] 72.5-74.1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional (CMNN) causes accounted for 186% (17.9-19.6), and injuries 8.0% (7.7-8.2). Total numbers of deaths from NCD causes increased from 2007 to 2017 by 22.7% (21.5-23.9), representing an additional 7.61 million (7. 20-8.01) deaths estimated in 2017 versus 2007. The death rate from NCDs decreased globally by 7.9% (7.08.8). The number of deaths for CMNN causes decreased by 222% (20.0-24.0) and the death rate by 31.8% (30.1-33.3). Total deaths from injuries increased by 2.3% (0-5-4-0) between 2007 and 2017, and the death rate from injuries decreased by 13.7% (12.2-15.1) to 57.9 deaths (55.9-59.2) per 100 000 in 2017. Deaths from substance use disorders also increased, rising from 284 000 deaths (268 000-289 000) globally in 2007 to 352 000 (334 000-363 000) in 2017. Between 2007 and 2017, total deaths from conflict and terrorism increased by 118.0% (88.8-148.6). A greater reduction in total deaths and death rates was observed for some CMNN causes among children younger than 5 years than for older adults, such as a 36.4% (32.2-40.6) reduction in deaths from lower respiratory infections for children younger than 5 years compared with a 33.6% (31.2-36.1) increase in adults older than 70 years. Globally, the number of deaths was greater for men than for women at most ages in 2017, except at ages older than 85 years. Trends in global YLLs reflect an epidemiological transition, with decreases in total YLLs from enteric infections, respirator}, infections and tuberculosis, and maternal and neonatal disorders between 1990 and 2017; these were generally greater in magnitude at the lowest levels of the Socio-demographic Index (SDI). At the same time, there were large increases in YLLs from neoplasms and cardiovascular diseases. YLL rates decreased across the five leading Level 2 causes in all SDI quintiles. The leading causes of YLLs in 1990 neonatal disorders, lower respiratory infections, and diarrhoeal diseases were ranked second, fourth, and fifth, in 2017. Meanwhile, estimated YLLs increased for ischaemic heart disease (ranked first in 2017) and stroke (ranked third), even though YLL rates decreased. Population growth contributed to increased total deaths across the 20 leading Level 2 causes of mortality between 2007 and 2017. Decreases in the cause-specific mortality rate reduced the effect of population growth for all but three causes: substance use disorders, neurological disorders, and skin and subcutaneous diseases. Interpretation Improvements in global health have been unevenly distributed among populations. Deaths due to injuries, substance use disorders, armed conflict and terrorism, neoplasms, and cardiovascular disease are expanding threats to global health. For causes of death such as lower respiratory and enteric infections, more rapid progress occurred for children than for the oldest adults, and there is continuing disparity in mortality rates by sex across age groups. Reductions in the death rate of some common diseases are themselves slowing or have ceased, primarily for NCDs, and the death rate for selected causes has increased in the past decade. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017