14 research outputs found

    Understanding Plant Responses to Drought and Salt Stresses: Advances and Challenges in “Omics” Approaches

    Get PDF
    Global climatic changes and the temperature-associated fluctuations in drought, soil and water salinization and flooding have resulted in huge pressure on crop plants for their optimum yield potential. These challenges have to be met through innovative scientific technologies. Recent advances in the “Omics” approaches such as transcriptomics, proteomics and metabolomics offer new dimensions for understanding plant responses to drought and salt stresses and identification of major genes/QTLs for generation of resistant germplasm. Most importantly, the proteomics coupled with bioinformatics tools have accelerated the proteins characterization at the organ, tissue, organelle and membrane levels. Here we present an update on the progress of “Omics” approaches to understand plant responses to drought and salt stress particularly in the last decade. Future challenges and solution efforts are also discussed in the ways of omics approaches. The need for research involving integrated omics technologies with advanced tools and to meet the future challenges toward practical implementation of these technologies for crop improvement against drought and salinity stresses is also discussed

    植物における非生物的ストレス耐性研究の現状と応用への試み

    Get PDF
    筑波大学 (University of Tsukuba)201

    The potential of unintended effects in potato glycoalkaloids

    Get PDF
    Unintended changes have long been considered as byproducts associated with genetic improvement of crop plants. The issue has been hotly debated during recent years following the identification of some unwanted characters in genetically engineered crop plants. In this context, the subject of unintended effects of plant transformation on known toxic compounds has been an area of immense interest. Compositional changes in these toxins may have a profound impact on human and animal health. Potato glycoalkaloids are known toxic compounds to humans and animals. These days, food safety evaluation tests of transgenic potato varieties are conducted on routine basis to keep the glycoalkaloid levels below a threshold level. Some transgenic potato varieties have been found with altered glycoalkaloid levels, which have created doubts on the process of transformation and tissue culture conditions. In this review, we summarize recent work on unintended effects in crop plants with special emphasis on compositional changes in potato glycoalkaloids as a result of genetic transformation.Keywords: Unintended effects, transgenic potato, glycoalkaloids, food safety, environmental stressAfrican Journal of Biotechnology Vol. 12(8), pp. 754-76

    Microbial Mitigation of Drought Stress in Plants: Adaptations to Climate Change

    Get PDF
    The global temperature is constantly increasing due to the phenomenon of climate change. Plants have developed various mechanisms to defend themselves against environmental stresses including drought stress. Apart from indigenous biochemical, physiological, and molecular mechanisms of adaptation to stress, the plant-associated microbes may also play a crucial role in plant drought tolerance. The endophytic and rhizospheric microbes perform various functions and produce different enzymes and compounds that play an important role in plants’ adaptation to various environmental stresses including drought stress. Some of the key mechanisms include production of growth hormones, siderophores, organic acids, induction of the ROS scavenging system, phosphate solubilization, and nitrogen fixation. However, the production of ACC deaminase in the plant-associated microbes has vital roles in reduction of ethylene levels under drought stress, resulting in improved plant growth and stress tolerance. Owing to the complex nature of drought tolerance, a multi-pronged approach would have to be adapted to further enhance the microbial-mediated drought tolerance in plants

    Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance

    Get PDF
    Global agriculture in the context of growing and expanding populations is under huge pressure to provide increased food, feed, and fiber. The recent phenomenon of climate change has further added fuel to the fire. It has been practically established now that the global temperature has been on the increase with associated fluctuations in annual rainfall regimes, and the resultant drought and flood events and increasing soil and water salinization. These challenges would be met with the introduction and utilization of new technologies coupled with conventional approaches. In recent years, transgenic technology has been proved very effective in terms of production of improved varieties of crop plants, resistant to biotic stresses. The abiotic stresses such as salt and drought are more complex traits, controlled by many genes. Transgenic plant development for these stresses has utilized many single genes. However, much emphasis has been placed on genes catalyzing the biosynthetic pathways of osmoprotectants. This review focuses on the current status of research on osmoprotectant genes and their role in abiotic stress tolerance in transgenic plants

    Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance

    No full text
    Global agriculture in the context of growing and expanding populations is under huge pressure to provide increased food, feed, and fiber. The recent phenomenon of climate change has further added fuel to the fire. It has been practically established now that the global temperature has been on the increase with associated fluctuations in annual rainfall regimes, and the resultant drought and flood events and increasing soil and water salinization. These challenges would be met with the introduction and utilization of new technologies coupled with conventional approaches. In recent years, transgenic technology has been proved very effective in terms of production of improved varieties of crop plants, resistant to biotic stresses. The abiotic stresses such as salt and drought are more complex traits, controlled by many genes. Transgenic plant development for these stresses has utilized many single genes. However, much emphasis has been placed on genes catalyzing the biosynthetic pathways of osmoprotectants. This review focuses on the current status of research on osmoprotectant genes and their role in abiotic stress tolerance in transgenic plants

    Molecular and Biochemical Characterization, Antimicrobial Activity, Stress Tolerance, and Plant Growth-Promoting Effect of Endophytic Bacteria Isolated from Wheat Varieties

    No full text
    Endophytic bacteria have been utilized as an alternative source to chemical fertilizers and pesticides to enhance plant productivity and defense mechanisms against biotic and abiotic stress. Five endophytic bacterial strains were isolated from the seeds of three different Pakistani wheat varieties (Ghaneemat-e-IBGE, Atta-Habib, and Siren). The isolated strains AH-1, S-5, S-7, GI-1, and GI-6 showed phylogenetic similarity with Bacillus altitudinis, B. aryabhattai, B. wiedmannii, Pseudomonas aeruginosa, and Burkholderia gladioli, respectively. All strains showed catalase activity (except AH-1) and Indole-3-acetic acid production, with the highest concentration (16.77 μg·mL−1) found for GI-6, followed by S-5 (11.5 μg·mL−1), nitrogen assimilation (except S-7), phosphorus solubilization (except S-7 and AH-1), and ability to produce siderophores, with maximum productions for GI-6 (31 ± 3.5 psu) and GI-1 (30 ± 2.9 psu). All five analyzed strains possessed antimicrobial activity, which was particularly strong in GI-6 and S-5 against Klebsiella pneumonia, Escherichia coli, and Bacillus subtilis. Increasing salinity stress with NaCl negatively affected the bacterial growth of all isolates. However, strains GI-6 and S-5 showed salt tolerance after three days of incubation. A drought tolerance test resulted in a negative impact of poly ethylene glycol on bacterial growth, which was, however, less pronounced in GI-6 strain. The GI-6 strain revealed growth-promoting effects on inoculated wheat plants
    corecore