14 research outputs found

    Neutron electric dipole moment search : data analysis and development around the ÂčâčâčHg

    No full text
    Un moment dipolaire Ă©lectrique permanent (EDM) est une propriĂ©tĂ© fondamentale des systĂšmes simples comme par exemple l'Ă©lectron, les atomes/molĂ©cules ou le neutron dont l'existence est prĂ©dite par le ModĂšle Standard de la physique des particules (MS) mais qui n'a pas pour l'heure jamais Ă©tĂ© observĂ©e. Cette observable violant la symĂ©trie CP offre la possibilitĂ© de relier la physique des particules Ă  l'Ă©nigme cosmologique fondamentale de l'asymĂ©trie baryonique de l'Univers observĂ©e de nos jours. Produire une telle asymĂ©trie requiert de nouvelles sources/de nouveaux mĂ©canismes de violation de CP, hors MS, qui peuvent ĂȘtre sondĂ©s de façon privilĂ©giĂ©e par les recherches d'EDM. La sensibilitĂ© des expĂ©riences EDM actuelles se trouve des ordres de grandeurs au-dessus des prĂ©dictions du secteur faible du MS. L'absence de signal, aprĂšs 60 ans de quĂȘte, dĂ©termine la limite supĂ©rieure la plus forte sur la violation de CP dans le secteur fort du MS et contraint l'espace des phases des modĂšles de nouvelle physique. A contrario, la mesure d'un EDM non nul dans les annĂ©es Ă  venir pourra s'interprĂ©ter comme le signal d'une physique au-delĂ  du MS Ă©voluant Ă  l'Ă©chelle multi-TeV. Dans cette perspective envoĂ»tante, de nombreux nouveaux projets de mesures des EDM ont vu le jour ces derniĂšres annĂ©es et d'importants efforts sont poursuivis auprĂšs du neutron notamment. Ce manuscrit prĂ©sente la recherche de l'EDM du neutron menĂ©e auprĂšs de l'expĂ©rience la plus sensible Ă  ce jour basĂ©e Ă  l'Institut Paul Scherrer en Suisse.A permanent electric dipole moment (EDM) is a fundamental property of simple systems such as the electron, atoms/molecules or the neutron whose amplitude is expected to be non-zero within the Standard Model of particles physics (SM) but which has never been observed so far. This observable violating the CP symmetry offers the opportunity to link particle physics to the fundamental cosmological enigma of the observed baryon asymmetry of the Universe. Such an asymmetry requires new CP violation sources/mechanism beyond the SM, which can be best probed by EDM searches. The current EDM experiments sensitivity is order of magnitude above the weak SM sector predictions. Measuring a null EDM, after a 60 years quest, set the strongest upper limit on the CP violation in the strong SM sector and constrains the new physics models phase space. On the contrary, measuring a non-zero EDM in the coming years can be understood as a signal from physics beyond the SM evolving at a multi-TeV scale. In this haunting perspective, many new EDM projects raised in the last years and important efforts are pursued near the neutron in particular. This manuscript present the neutron EDM search near the most sensitive experiment running at the Paul Scherrer Institute in Switzerland

    Mesure du moment dipolaire Ă©lectrique du neutron : analyse de donnĂ©es et dĂ©veloppement autour du ÂčâčâčHg

    No full text
    A permanent electric dipole moment (EDM) is a fundamental property of simple systems such as the electron, atoms/molecules or the neutron whose amplitude is expected to be non-zero within the Standard Model of particles physics (SM) but which has never been observed so far. This observable violating the CP symmetry offers the opportunity to link particle physics to the fundamental cosmological enigma of the observed baryon asymmetry of the Universe. Such an asymmetry requires new CP violation sources/mechanism beyond the SM, which can be best probed by EDM searches. The current EDM experiments sensitivity is order of magnitude above the weak SM sector predictions. Measuring a null EDM, after a 60 years quest, set the strongest upper limit on the CP violation in the strong SM sector and constrains the new physics models phase space. On the contrary, measuring a non-zero EDM in the coming years can be understood as a signal from physics beyond the SM evolving at a multi-TeV scale. In this haunting perspective, many new EDM projects raised in the last years and important efforts are pursued near the neutron in particular. This manuscript present the neutron EDM search near the most sensitive experiment running at the Paul Scherrer Institute in Switzerland.Un moment dipolaire Ă©lectrique permanent (EDM) est une propriĂ©tĂ© fondamentale des systĂšmes simples comme par exemple l'Ă©lectron, les atomes/molĂ©cules ou le neutron dont l'existence est prĂ©dite par le ModĂšle Standard de la physique des particules (MS) mais qui n'a pas pour l'heure jamais Ă©tĂ© observĂ©e. Cette observable violant la symĂ©trie CP offre la possibilitĂ© de relier la physique des particules Ă  l'Ă©nigme cosmologique fondamentale de l'asymĂ©trie baryonique de l'Univers observĂ©e de nos jours. Produire une telle asymĂ©trie requiert de nouvelles sources/de nouveaux mĂ©canismes de violation de CP, hors MS, qui peuvent ĂȘtre sondĂ©s de façon privilĂ©giĂ©e par les recherches d'EDM. La sensibilitĂ© des expĂ©riences EDM actuelles se trouve des ordres de grandeurs au-dessus des prĂ©dictions du secteur faible du MS. L'absence de signal, aprĂšs 60 ans de quĂȘte, dĂ©termine la limite supĂ©rieure la plus forte sur la violation de CP dans le secteur fort du MS et contraint l'espace des phases des modĂšles de nouvelle physique. A contrario, la mesure d'un EDM non nul dans les annĂ©es Ă  venir pourra s'interprĂ©ter comme le signal d'une physique au-delĂ  du MS Ă©voluant Ă  l'Ă©chelle multi-TeV. Dans cette perspective envoĂ»tante, de nombreux nouveaux projets de mesures des EDM ont vu le jour ces derniĂšres annĂ©es et d'importants efforts sont poursuivis auprĂšs du neutron notamment. Ce manuscrit prĂ©sente la recherche de l'EDM du neutron menĂ©e auprĂšs de l'expĂ©rience la plus sensible Ă  ce jour basĂ©e Ă  l'Institut Paul Scherrer en Suisse

    76Ge detector R&D strategy for LEGEND

    No full text
    <p>Neutrinoless double decay (0<em>Îœ</em><em>ÎČ</em><em>ÎČ</em>) is a powerful observable for probing new physics. Based on the experience of GERDA and MJD experiments, the LEGEND (Large Enriched Germanium Experiment for Neutrinoless <em>ÎČ</em><em>ÎČ</em> Decay) collaboration has been founded with the goal to build a ton scale experiment and boost the 0<em>Îœ</em><em>ÎČ</em><em>ÎČ</em> half-life sensitivity in the 76Ge by two orders of magnitude with a phased approach by first making use of existing GERDA infrastructures at LNGS in Italy. This poster will present the LEGEND collaboration strategy to produce a new Ge detector design called “Inverted Coaxial Point Contact (ICPC) Ge detector” for the 200 kg phase. ICPC detector mass can be as high as 3 kg and surface to volume ratio 30% lower as compared to Gerda BEGe or MJD PPC Ge detectors. These two points are of great interest to further reduce the background coming from holders, cables, electronics and surface events that significantly contribute to running experiments.</p

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    No full text
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10310^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    No full text
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10310^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Highly-parallelized simulation of a pixelated LArTPC on a GPU