4,339 research outputs found

    Source and quantity of carbon influence its sequestration in Rostherne Mere (UK) sediment: a novel application of stepped combustion radiocarbon analysis

    Get PDF
    We explored the roles of phytoplankton production, carbon source, and human activity on carbon accumulation in a eutrophic lake (Rostherne Mere, UK) to understand how changes in nutrient loading, algal community structure and catchment management can influence carbon sequestration in lake sediments. Water samples (dissolved inorganic, organic and particulate carbon) were analysed to investigate contemporary carbon sources. Multiple variables in a 55-cm sediment core, which represents the last ~ 90 years of accumulation, were studied to determine historical production rates of algal communities and carbon sources. Fluctuations in net primary production, inferred from sedimentary diatom abundance and high-performance liquid chromatography (HPLC) pigment methods, were linked to nutrient input from sewage treatment works (STW) in the catchment. Stepped combustion radiocarbon (SCR) measurements established that lake sediment contains between 11% (~ 1929 CE) and 69% (~ 1978 CE) recalcitrant carbon, with changes in carbon character coinciding with peaks in accumulation rate and linked to STW inputs. Catchment disturbance was identified by radiocarbon analysis, and included STW construction in the 1930s, determined using SCR analysis, and recent nearby highway construction, determined by measurements on dissolved organic carbon from the lake and outflow river. The quantity of autochthonous carbon buried was related to diatom biovolume accumulation rate (DBAR) and decreased when diatom accumulation rate and valve size declined, despite an overall increase in net carbon production. HPLC pigment analysis indicated that changes in total C deposition and diatom accumulation were related to proliferation of non-siliceous algae. HPLC results also indicated that dominance of recalcitrant carbon in sediment organic carbon was likely caused by increased deposition rather than preservation factors. The total algal accumulation rate controlled the sediment organic carbon accumulation rate, whereas DBAR was correlated to the proportion of each carbon source buried

    Source and quantity of carbon influence its sequestration in Rostherne Mere (UK) sediment: a novel application of stepped combustion radiocarbon analysis

    Get PDF
    We explored the roles of phytoplankton production, carbon source, and human activity on carbon accumulation in a eutrophic lake (Rostherne Mere, UK) to understand how changes in nutrient loading, algal community structure and catchment management can influence carbon sequestration in lake sediments. Water samples (dissolved inorganic, organic and particulate carbon) were analysed to investigate contemporary carbon sources. Multiple variables in a 55-cm sediment core, which represents the last ~ 90 years of accumulation, were studied to determine historical production rates of algal communities and carbon sources. Fluctuations in net primary production, inferred from sedimentary diatom abundance and high-performance liquid chromatography (HPLC) pigment methods, were linked to nutrient input from sewage treatment works (STW) in the catchment. Stepped combustion radiocarbon (SCR) measurements established that lake sediment contains between 11% (~ 1929 CE) and 69% (~ 1978 CE) recalcitrant carbon, with changes in carbon character coinciding with peaks in accumulation rate and linked to STW inputs. Catchment disturbance was identified by radiocarbon analysis, and included STW construction in the 1930s, determined using SCR analysis, and recent nearby highway construction, determined by measurements on dissolved organic carbon from the lake and outflow river. The quantity of autochthonous carbon buried was related to diatom biovolume accumulation rate (DBAR) and decreased when diatom accumulation rate and valve size declined, despite an overall increase in net carbon production. HPLC pigment analysis indicated that changes in total C deposition and diatom accumulation were related to proliferation of non-siliceous algae. HPLC results also indicated that dominance of recalcitrant carbon in sediment organic carbon was likely caused by increased deposition rather than preservation factors. The total algal accumulation rate controlled the sediment organic carbon accumulation rate, whereas DBAR was correlated to the proportion of each carbon source buried

    Quantitative optical spectroscopy of 87^{87}Rb vapour in the Voigt geometry in DC magnetic fields up to 0.4T

    Get PDF
    We present a detailed spectroscopic investigation of a thermal ⁸⁷Rb atomic vapour in magnetic fields up to 0.4T in the Voigt geometry. We fit experimental spectra with our theoretical model ElecSus and find excellent quantitative agreement, with RMS errors of backsim0.3%. We extract the magnetic field strength and the angle between the polarisation of the light and the magnetic field from the atomic signal and find excellent agreement to within backsim1% with a commercial Hall probe. Finally, we present an investigation of the relative sensitivity of this technique to variations in the field strength and angle with a view to enabling atom-based high-field vector magnetometry

    Performance of the LHCb vertex locator

    Get PDF
    The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 μm is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means that the inner regions of the n+-on-n sensors have undergone space-charge sign inversion due to radiation damage. The VELO performance parameters that drive the experiment's physics sensitivity are also given. The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 μm for translations in the plane transverse to the beam. A primary vertex resolution of 13 μm in the transverse plane and 71 μm along the beam axis is achieved for vertices with 25 tracks. An impact parameter resolution of less than 35 μm is achieved for particles with transverse momentum greater than 1 GeV/c

    Precision luminosity measurements at LHCb

    Get PDF
    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy √s. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for √s = 2.76, 7 and 8 TeV (proton-proton collisions) and for √sNN = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at √s = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider
    corecore