2 research outputs found

    Optimizing Stream Water Mercury Sampling for Calculation of Fish Bioaccumulation Factors

    No full text
    Mercury (Hg) bioaccumulation factors (BAFs) for game fishes are widely employed for monitoring, assessment, and regulatory purposes. Mercury BAFs are calculated as the fish Hg concentration (Hg<sub>fish</sub>) divided by the water Hg concentration (Hg<sub>water</sub>) and, consequently, are sensitive to sampling and analysis artifacts for fish and water. We evaluated the influence of water sample timing, filtration, and mercury species on the modeled relation between game fish and water mercury concentrations across 11 streams and rivers in five states in order to identify optimum Hg<sub>water</sub> sampling approaches. Each model included fish trophic position, to account for a wide range of species collected among sites, and flow-weighted Hg<sub>water</sub> estimates. Models were evaluated for parsimony, using Akaike’s Information Criterion. Better models included filtered water methylmercury (FMeHg) or unfiltered water methylmercury (UMeHg), whereas filtered total mercury did not meet parsimony requirements. Models including mean annual FMeHg were superior to those with mean FMeHg calculated over shorter time periods throughout the year. FMeHg models including metrics of high concentrations (80th percentile and above) observed during the year performed better, in general. These higher concentrations occurred most often during the growing season at all sites. Streamflow was significantly related to the probability of achieving higher concentrations during the growing season at six sites, but the direction of influence varied among sites. These findings indicate that streamwater Hg collection can be optimized by evaluating site-specific FMeHg – UMeHg relations, intra-annual temporal variation in their concentrations, and streamflow-Hg dynamics

    Shallow Groundwater Mercury Supply in a Coastal Plain Stream

    No full text
    Fluvial methylmercury (MeHg) is attributed to methylation in up-gradient wetland areas. This hypothesis depends on efficient wetland-to-stream hydraulic transport under nonflood and flood conditions. Fluxes of water and dissolved (filtered) mercury (Hg) species (FMeHg and total Hg (FTHg)) were quantified in April and July of 2009 in a reach at McTier Creek, South Carolina to determine the relative importance of tributary surface water and shallow groundwater Hg transport from wetland/floodplain areas to the stream under nonflood conditions. The reach represented less than 6% of upstream main-channel distance and 2% of upstream basin area. Surface-water discharge increased within the reach by approximately 10%. Mean FMeHg and FTHg fluxes increased within the reach by 23–27% and 9–15%, respectively. Mass balances indicated that, under nonflood conditions, the primary supply of water, FMeHg, and FTHg within the reach (excluding upstream surface water influx) was groundwater discharge, rather than tributary transport from wetlands, in-stream MeHg production, or atmospheric Hg deposition. These results illustrate the importance of riparian wetland/floodplain areas as sources of fluvial MeHg and of groundwater Hg transport as a fundamental control on Hg supply to Coastal Plain streams