100 research outputs found

    Geochemistry of Ocean Floor and Fore-arc Serpentinites: Constraints on the Ultramafic Input to Subduction Zones

    Get PDF
    We provide new insights into the geochemistry of serpentinites from mid-ocean ridges (Mid-Atlantic Ridge and Hess Deep), passive margins (Iberia Abyssal Plain and Newfoundland) and fore-arcs (Mariana and Guatemala) based on bulk-rock and in situ mineral major and trace element compositional data collected on drill cores from the Deep Sea Drilling Project and Ocean Drilling Program. These data are important for constraining the serpentinite-hosted trace element inventory of subduction zones. Bulk serpentinites show up to several orders of magnitude enrichments in Cl, B, Sr, U, Sb, Pb, Rb, Cs and Li relative to elements of similar compatibility during mantle melting, which correspond to the highest primitive mantle-normalized B/Nb, B/Th, U/Th, Sb/Ce, Sr/Nd and Li/Y among subducted lithologies of the oceanic lithosphere (serpentinites, sediments and altered igneous oceanic crust). Among the elements showing relative enrichment, Cl and B are by far the most abundant with bulk concentrations mostly above 1000 µg g−1 and 30 µg g−1, respectively. All other trace elements showing relative enrichments are generally present in low concentrations (µg g−1 level), except Sr in carbonate-bearing serpentinites (thousands of µg g−1). In situ data indicate that concentrations of Cl, B, Sr, U, Sb, Rb and Cs are, and that of Li can be, increased by serpentinization. These elements are largely hosted in serpentine (lizardite and chrysotile, but not antigorite). Aragonite precipitation leads to significant enrichments in Sr, U and B, whereas calcite is important only as an Sr host. Commonly observed brucite is trace element-poor. The overall enrichment patterns are comparable among serpentinites from mid-ocean ridges, passive margins and fore-arcs, whereas the extents of enrichments are often specific to the geodynamic setting. Variability in relative trace element enrichments within a specific setting (and locality) can be several orders of magnitude. Mid-ocean ridge serpentinites often show pronounced bulk-rock U enrichment in addition to ubiquitous Cl, B and Sr enrichment. They also exhibit positive Eu anomalies on chondrite-normalized rare earth element plots. Passive margin serpentinites tend to have higher overall incompatible trace element contents than mid-ocean ridge and fore-arc serpentinites and show the highest B enrichment among all the studied serpentinites. Fore-arc serpentinites are characterized by low overall trace element contents and show the lowest Cl, but the highest Rb, Cs and Sr enrichments. Based on our data, subducted dehydrating serpentinites are likely to release fluids with high B/Nb, B/Th, U/Th, Sb/Ce and Sr/Nd, rendering them one of the potential sources of some of the characteristic trace element fingerprints of arc magmas (e.g. high B/Nb, high Sr/Nd, high Sb/Ce). However, although serpentinites are a substantial part of global subduction zone chemical cycling, owing to their low overall trace element contents (except for B and Cl) their geochemical imprint on arc magma sources (apart from addition of H2O, B and Cl) can be masked considerably by the trace element signal from subducted crustal component

    Reconstructing annual inflows to the headwater catchments of the Murray River, Australia, using the Pacific Decadal Oscillation

    Get PDF
    The Pacific Decadal Oscillation (PDO) is a major forcing of inter-decadal to quasi-centennial variability of the hydroclimatology of the Pacific Basin. Its effects are most pronounced in the extra-tropical regions, while it modulates the El Nino Southern Oscillation (ENSO), the largest forcing of global inter-annual climate variability. PalaeoPDO indices are now available for at least the past 500 years. Here we show that the \u3e500 year PDO index of Shen et al. (2006) is highly correlated with inflows to the headwaters of Australia\u27s longest river system, the Murray-Darling. We then use the PDO to reconstruct annual inflows to the Murray River back to A.D. 1474. These show penta-decadal and quasi-centennial cycles of low inflows and a possible 500 year cycle of much greater inflow variability. Superimposed on this is the likely influence of recent anthropogenic global warming. We believe this may explain the exceptionally low inflows of the past decade, the lowest of the previous 529 years

    Ultra-trace element characterization of the central Ottawa River basin using a rapid, flexible, and low-volume ICP-MS method

    Get PDF
    Ultra-trace (<1 ng g-1) rare earth elements and yttrium (REE+Y) and high field strength element (HFSE) geochemistry of freshwater can constrain element sources, aqueous processes in hydrologic catchments, and the signature of dissolved terrestrial fluxes to the oceans. This study details an adapted method capable of quantifying ≥38 elements (including all REE+Y, Nb, Ta, Zr, Hf, Mo, W, Th, U) with minimal sample preparation in natural water aliquots as low as ≤2 mL. The method precision and accuracy are demonstrated using measurement of the National Research Council – Conseil national de recherches Canada (NRC-CNRC) river water certified reference material (CRM) SLRS-6 sampled from the Ottawa River (OR). Data from SLRS CRM are compared to those of new, filtered (HREE-enriched REE+Y patterns, small natural positive Y and Gd anomalies, and negative Eu and Ce anomalies. These REE+Y features are coherent downstream in the OR apart from amplification of Eu and Ce anomalies during REE removal/dilution. The OR samples capture a downstream decrease in sparingly soluble HFSE (Th, Nb, Ta, Zr, Hf), presumably related to their colloid-particulate removal from the dissolved load, accompanied by crustal Zr/Hf (32.5 ± 5.1) and supercrustal Nb/Ta (25.1 ± 7.7) ratios. Subcrustal Th/U (0.17-0.96) and supercrustal Mo/W (12.0-74.5) ratios in all ORB waters indicate preferential release and aqueous solubility of U>Th and Mo>W, with the latter attributed primarily to preferential W adsorption on soil or upstream aquatic (oxy)(hydr)oxide surfaces

    Pervasively anoxic surface conditions at the onset of the Great Oxidation Event: new multi-proxy constraints from the Cooper Lake paleosol

    Get PDF
    Oceanic element inventories derived from marine sedimentary rocks place important constraints on oxidative continental weathering in deep time, but there remains a scarcity in complementary observations directly from continental sedimentary reservoirs. This study focuses on better defining continental weathering conditions near the Archean-Proterozoic boundary through the multi-proxy (major and ultra-trace element, Fe and Cr stable isotopes, μ-XRF elemental mapping, and detrital zircon U-Pb geochronology) investigation of the ca. 2.45 billion year old (giga annum, Ga) Cooper Lake paleosol (saprolith), developed on a sediment-hosted mafic dike within the Huronian Supergroup (Ontario, Canada). Throughout the variably altered Cooper Lake saprolith, ratios of immobile elements (Nb, Ta, Zr, Hf, Th, Al, Ti) are constant, indicating a uniform pre-alteration dike composition, lack of extreme pH weathering conditions, and no major influence from ligand-rich fluids during weathering or burial metasomatism/metamorphism. The loss of Mg, Fe, Na, Sr, and Li, a signature of albite and ferromagnesian silicate weathering, increases towards the top of the preserved profile (unconformity) and dike margins. Coupled bulk rock behaviour of Fe-Mg-Mn and co-localization of Fe- Mn in clay minerals (predominantly chlorite) indicates these elements were solubilized primarily in their divalent state without Fe/Mn-oxide formation. A lack of a Ce anomaly and immobility of Mo, V, and Cr further support pervasively anoxic weathering conditions. Subtle U enrichment is the only geochemical evidence, if primary, that could be consistent with oxidative element mobilization. The leaching of ferromagnesian silicates was accompanied by variable mobility and depletion of transition metals with a relative depletion order of Fe≈Mg≈Zn\u3eNi\u3eCo\u3eCu (Cu being significantly influenced by secondary sulfide formation). Mild enrichment of heavy Fe isotopes (δ56/54Fe from 0.169 to 0.492 ‰) correlating with Fe depletion in the saprolith indicates loss of isotopically light aqueous Fe(II). Minor REE+Y fractionation with increasing alteration intensity, including a decreasing Eu anomaly and Y/Ho ratio, is attributed to albite breakdown and preferential scavenging of HREE\u3eY by clay minerals, respectively. Younger metasomatism resulted in the addition of several elements (K, Rb, Cs, Be, Tl, Ba, Sn, In, W), partly or wholly obscuring their earlier paleo-weathering trends. The behavior of Cr at Cooper Lake can help test previous hypotheses of an enhanced, low pH-driven continental weathering flux of Cr(III) to marine reservoirs between ca. 2.48-2.32 Ga and the utility of the stable Cr isotope proxy of Mn-oxide induced Cr(III) oxidation. Synchrotron μ- XRF maps and invariant Cr/Nb ratios reveal complete immobility of Cr despite its distribution amongst both clay-rich groundmass and Fe-Ti oxides. Assuming a pH-dependent, continental source of Cr(III) to marine basins, the Cr immobility at Cooper Lake indicates either that signatures of acidic surface waters were localized to uppermost and typically unpreserved regolith horizons or were geographically restricted to acid-generating point sources. However, in given detrital pyrite preservation in fluvial sequences overlying the paleosol, we propose that the oxidative sulphide corrosion required to drive surface pH(δ53/52Cr: -0.321 ± 0.038 ‰, 2sd, n=34) that cannot be linked to Cr(III) oxidation and is instead interpreted to have a magmatic origin. The combined chemical signatures and continued preservation of detrital pyrite/uraninite indicate low atmospheric O2 during weathering at ca. 2.45 Ga preserved in the rift-related sedimentary rocks of the Lower Huronian. The aqueous flux from the reduced weathering of mafic rocks was characterized by a greater abundance of transition metals (Fe, Mn, Zn, Co, Ni) with isotopically light Fe(II), as well as higher Eu/Eu* and Y/Ho. In most models of Precambrian ocean element inventories, hydrothermal fluids are viewed as the main supplier of several metals (e.g., Fe, Zn), although the results herein suggest that a riverine metal supply may have been substantial and that using Eu-excess as a strict proxy for hydrothermal flux may be misleading in near-shore marine sedimentary environments

    Juvenile crust formation in the Zimbabwe Craton deduced from the O-Hf isotopic record of 3.8–3.1 Ga detrital zircons

    Get PDF
    Hafnium and oxygen isotopic compositions measured in-situ on U-Pb dated zircon from Archaean sedimentary successions belonging to the 2.9-2.8 Ga Belingwean/Bulawayan groups and previously undated Sebakwian Group are used to characterize the crustal evolution of the Zimbabwe Craton prior to 3.0 Ga. Microstructural and compositional criteria were used to minimize effects arising from Pb loss due to metamorphic overprinting and interaction with low-temperature fluids. 207 Pb/206 Pb age spectra (concordance >90%) reveal prominent peaks at 3.8, 3.6, 3.5, and 3.35 Ga, corresponding to documented geological events, both globally and within the Zimbabwe Craton. Zircon delta O-18 values from +4 to +10% point to both derivation from magmas in equilibrium with mantle oxygen and the incorporation of material that had previously interacted with water in near-surface environments. In epsilon(Hf)-time space, 3.8-3.6 Ga grains define an array consistent with reworking of a mafic reservoir ((176) Lu/(177) Hf similar to 0.015) that separated from chondritic mantle at similar to 3.9 Ga. Crustal domains formed after 3.6 Ga depict a more complex evolution, involving contribution from chondritic mantle sources and, to a lesser extent, reworking of pre-existing crust. Protracted remelting was not accompanied by significant mantle depletion prior to 3.35 Ga. This implies that early crust production in the Zimbabwe Craton did not cause complementary enriched and depleted reservoirs that were tapped by later magmas, possibly because the volume of crust extracted and stabilised was too small to influence (asthenospheric) mantle isotopic evolution. Growth of continental crust through pulsed emplacement of juvenile (chondritic mantle-derived) melts, into and onto the existing cratonic nucleus, however, involved formation of complementary depleted subcontinental lithospheric mantle since the early Archaean, indicative of strongly coupled evolutionary histories of both reservoirs, with limited evidence for recycling and lateral accretion of arc-related crustal blocks until 3.35 Ga. (C) 2017 Elsevier Ltd. All rights reserved

    Trace element and Pb isotope fingerprinting of atmospheric pollution sources: A case study from the east coast of Ireland

    Get PDF
    Unravelling inputs of multiple air pollution sources and reconstructing their historic contribution can be a difficult task. Here, new trace metal concentrations and Pb isotope data were combined for a radionuclide (210Pb-241Am) dated peat core from the Liffey Head bog (LHB) in eastern Ireland in order to reconstruct how different sources contributed to the atmospheric pollution over the past century. Highest enrichments in the heavy metals Pb, Cu, Ag, Sn, and Sb, together with a Pb isotope composition (206Pb/204Pb: 18.351 ± 0.013; 206Pb/207Pb: 1.174 ± 0.012) close to that of the Wicklow mineralisation demonstrates significant aerial influx of heavy metals from local mining and smelting activities during the 19th century until ca. 1940s. A dramatic compositional shift defined by elevated Co, Cr, Ni, Mo, Zn, and V enrichments and a sharp transition towards unradiogenic 206Pb values (206Pb/204Pb: 18.271 ± 0.013–17.678 ± 0.006; 206Pb/207Pb: 1.170 ± 0.012–1.135 ± 0.007) is documented from the 1940s until ca. 2000. These are attributed to the atmospheric impact of fossil fuels and especially leaded petrol, modelled to have contributed between 6 and 78% to the total Pb pollution at this site. The subsequent turn to a more radiogenic Pb isotope signature since 2000 in Ireland is clearly documented in the investigated archive (206Pb/204Pb: 17.930 ± 0.006; 206Pb/207Pb: 1.148 ± 0.007) and reflects the abolishment of leaded petrol. However, there remains a persisting and even increasing pollution in Ni, Mo, Cu, and especially Zn, collectively originating from countrywide use of fossil fuels(peat, coal, heating oil, and unleaded vehicle fuels) for domestic and industrial purposes. This illustrates the continued anthropogenic influence on important natural archives such as bogs in Ireland despite the phase-out of leaded petrol

    Palaeo-dust records: a window to understanding past environments

    Get PDF
    Dust entrainment, transport over vast distances and subsequent deposition is a fundamental part of the Earth system. Yet the role and importance of dust has been underappreciated, due largely to challenges associated with recognising dust in the landscape and interpreting its depositional history. Despite these challenges, interest in dust is growing. Technical advances in remote sensing and modelling have improved understanding of dust sources and production, while advances in sedimentology, mineralogy and geochemistry (in particular) have allowed dust to be more easily distinguished within sedimentary deposits. This has facilitated the reconstruction of records of dust emissions through time. A key advance in our understanding of dust has occurred following the development of methods to geochemically provenance (fingerprint) dust to its source region. This ability has provided new information on dust transport pathways, as well as the reach and impact of dust. It has also expanded our understanding of the processes driving dust emissions over decadal to millennial timescales through linking dust deposits directly to source area conditions. Dust provenance studies have shown that dust emission, transport and deposition are highly sensitive to variability in climate. They also imply that dust emissions are not simply a function of the degree of aridity in source areas, but respond to a more complex array of conditions, including sediment availability. As well as recording natural variability, dust records are also shown to sensitively track the impact of human activity. This is reflected by both changing dust emission rates and changing dust chemistry. Specific examples of how dust responds to, and records change, are provided with our work on dust emissions from Australia, the most arid inhabited continent and the largest dust source in the Southern Hemisphere. These case studies show that Australian dust emissions reflect hydro-climate variability, with reorganisation of Australian dust source areas occurring during the mid to late Holocene. Dust emissions are shown to sensitively map the structure of the Last Glacial Maximum in Australia, demonstrating that this period was associated with enhanced, but also variable dust emissions, driven by changing sources area conditions. Finally we show how dust emissions have responded to the arrival of Europeans and the associated onset of broad-scale agriculture across the Australian continent

    Geochemistry and secular geochemical evolution of the earth's mantle and lower crust

    No full text
    The incompatible elements U and Th are related to Pb via radioactive decay. Extraction, modifi cation and storage of continental crust have, over time, left an isotopic record in the continental crust itself and in the depleted portion of the mantle. Ancient lower crustal xenoliths require that crust has matured by upward transport of radioactive heat - producing elements; hundreds of millions of years after formation. Recycling of continental material has contributed in at least three ways to the generation of enriched mantle - melt sources. First, this has occurred by delamination of lower crustal segments back into the mantle. Second, sediment has been recycled back into the mantle in subduction zones, and third, since the oxygenation of the atmosphere, seawater U, weathered from the continents, has been incorporated into hydrated oceanic crust with which it has ultimately been recycled back into the mantle. The joint treatment of the lower continental crust and the mantle in terms of their geochemgeochemistry and their isotopic evolution may seem, at fi rst, a less than obvious choice. They are, however, related in the sense that the evidence for their evolution is largely of indirect nature, either inferred from rare xenoliths or via products of partial melting. Any joint treatment of these two geochemical reservoirs also inherently carries with it the assumption that they have, at least in part, mutually infl uenced each other's temporal evolution. Before attempting to condense into an opening book chapter the relevant aspects of the exhaustive body of knowledge about the geochemistry of the mantle and the much sparser information regarding the lower crust, it is necessary to remind ourselves of the evidence for their mutually related evolutions.</p

    Evaporative loss of moderately volatile metals from the superheated 1849 Ma Sudbury impact melt sheet inferred from stable Zn isotopes

    No full text
    The retention of moderately volatile elements on the growing Earth remains a major uncertainty in models of terrestrial accretion. Large impactors were the main carriers of accreted material but their mutual energetic collisions and impacts onto the Earth also caused chemical fractionation for which limited experimental data exist. The objective of this work was to study several moderately volatile elements in the third-largest impact basin preserved on Earth at Sudbury, Ontario. We conducted a new chemostratigraphic transect (n=41) of Zn isotope ratios and concentrations by analysing melt sheet and basin fill samples. The data were compared to common Pb, Cs, Cd and Sb concentration systematics. Within the crystallised melt sheet there are strong trends in the extent of moderately volatile element deficits, Zn isotope composition (δ66/64ZnJMC-L from 0.18 to 0.47‰) and initial Pb isotope composition. The combined evidence suggests that these trends reflect footwall contamination of a melt sheet that had experienced evaporative Zn-loss of up to 75–80%. Accounting for plausible isotopic signatures of target rocks, the maximum mass-dependent Zn isotope fractionation ε was 0.29 ± 0.04‰ (1 s.d.), which translates to modest fractionation factors α=0.99986 to 0.99975. This is comparable to melt fallout-glass and fused sands from nuclear detonation sites. We attribute the observed Zn loss and isotope fractionation to the formation of the impact melt. The rapid formation of a solid lid of breccias upon seawater ingress may have prevented stronger evaporative loss and isotope fractionation. Within the crater fill, there is an up-stratigraphy increase in Zn isotope variability (δ66/64ZnJMC-L from 0.29 to 1.05‰). Combined with evidence for biogenic reduced C, this suggests sedimentation of authigenic particulates within an enclosed crater sea. In the melt sheet, the Zn-Pb and Rb-Cs pairs experienced different extents of maximum evaporative loss (Pb up to 98.4% vs. Zn 78%; and Cs ∼90% vs. Rb ∼30%). The relative loss pattern could reflect evaporation from superheated silicate melt at ∼1,450 °C and 1 atm. Loss from super-liquidus melts formed by bolide impacts could have been a significant process shaping the Earth's volatile and moderately volatile inventory.</p
    corecore