916 research outputs found

    Hyporheic Zone Microbiome Assembly Is Linked to Dynamic Water Mixing Patterns in Snowmelt-Dominated Headwater Catchments

    Get PDF
    Terrestrial and aquatic elemental cycles are tightly linked in upland fluvial networks. Biotic and abiotic mineral weathering, microbially mediated degradation of organic matter, and anthropogenic influences all result in the movement of solutes (e.g., carbon, metals, and nutrients) through these catchments, with implications for downstream water quality. Within the river channel, the region of hyporheic mixing represents a hot spot of microbial activity, exerting significant control over solute cycling. To investigate how snowmelt-driven seasonal changes in river discharge affect microbial community assembly and carbon biogeochemistry, depth-resolved pore water samples were recovered from multiple locations around a representative meander on the East River near Crested Butte, CO, USA. Vertical temperature sensor arrays were also installed in the streambed to enable seepage flux estimates. Snowmelt-driven high river discharge led to an expanding zone of vertical hyporheic mixing and introduced dissolved oxygen into the streambed that stimulated aerobic microbial respiration. These physicochemical processes contributed to microbial communities undergoing homogenizing selection, in contrast to other ecosystems where lower permeability may limit the extent of mixing. Conversely, lower river discharge conditions led to a greater influence of upwelling groundwater within the streambed and a decrease in microbial respiration rates. Associated with these processes, microbial communities throughout the streambed exhibited increasing dissimilarity between each other, suggesting that the earlier onset of snowmelt and longer periods of base flow may lead to changes in the composition (and associated function) of streambed microbiomes, with consequent implications for the processing and export of solutes from upland catchments

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Hepatitis C prevalence in Denmark -an estimate based on multiple national registers

    Get PDF
    Background: A national survey for chronic hepatitis C has not been performed in Denmark and the prevalence is unknown. Our aim was to estimate the prevalence of chronic hepatitis C from public registers and the proportion of these patients who received specialized healthcare. Methods: Patients with a diagnosis of chronic hepatitis C were identified from four national registers: a laboratory register, the Hospital Discharge Register, a clinical database of chronic viral hepatitis and the Register of Communicable Diseases. The total population diagnosed with hepatitis C was estimated by capture-recapture analysis. The population with undiagnosed hepatitis C was derived from the national register of drug users by comparing diagnosed and tested persons. Results: A total of 6,935 patients diagnosed with chronic hepatitis C were identified in the four registers and the estimated population diagnosed with the disease was 9,166 persons (95% C.I. interval 8,973 – 9,877), corresponding to 0.21% (95% CI 0.21%-0.23%) of the Danish population over 15years of age. The prevalence was highest among persons 40–49years old (0.39%) and males (0.28%). It was estimated that 40% of the diagnosed patients lived in the capital region, and 33.5% had attended specialised healthcare. It was estimated that 46% of hepatitis C patients had not been diagnosed and the total population with chronic hepatitis C in Denmark was 16,888 (95% C.I. 16,474-18,287), corresponding to 0.38% (95% CI 0.37-0.42) of the population over 15years of age. Conclusions: The estimated prevalence of chronic hepatitis C in Denmark was 0.38%. Less than half of the patients with chronic hepatitis C in Denmark have been identified and among these patients, one in three has attended specialised care

    B-mode and colour Doppler sonographic examination of the milk vein and musculophrenic vein in dry cows and cows with a milk yield of 10 and 20 kg

    Get PDF
    BACKGROUND: This study investigated the effect of milk yield on blood flow variables in the milk vein and musculophrenic vein in dairy cows. METHODS: Five healthy dry cows, five cows with a daily milk yield of 10 kg and five others with a daily milk yield of 20 kg underwent B-mode and colour Doppler sonographic examination. The diameter of the veins, blood flow velocities and blood flow volumes were measured on both sides in standing, non-sedated cows using a 7.5 MHz linear transducer. RESULTS: Lactating cows had significantly higher blood flow velocities in the milk vein than dry cows; the maximum blood flow velocity of dry cows and those with a daily milk yield of 10 and 20 kg were 14.04, 38.77 and 39.49 cm/s, respectively, the minimum velocities were 0.63, 3.02 and 2.64 cm/s, respectively, and the mean maximum velocities were 8.21, 26.67 und 28.22 cm/s, respectively. Cows producing 20 kg of milk a day had a blood flow volume of 3.09 l/min, which was significantly higher than 0.79 l/min recorded in dry cows. Lactating cows had significantly higher mean maximum blood flow velocities in the musculophrenic vein than dry cows. Blood flow variables of both veins did not differ significantly between the left and right side. CONCLUSION: This study showed that milk yield has a profound effect on blood flow variables in the milk vein and to a lesser extent the musculophrenic vein. This must be taken into consideration in future Doppler sonographic studies of these veins and possibly other vessels. Furthermore, measurements on one side are representative of both sides

    Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world's marine ecosystems

    Get PDF
    Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (< 20 cm from species of maximum mass < 1kg) are targeted in all oceans, but the predicted yields would rarely be accessible in practice and this fishing strategy leads to the collapse of larger species if fishing mortality rates on different size classes cannot be decoupled. Our analyses show that models with minimal parameter demands that are based on a few established ecological principles can support equitable analysis and comparison of diverse ecosystems. The analyses provide insights into the effects of parameter uncertainty on global biomass and production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented. Consequently, our simple models become increasingly less useful than more complex alternatives when addressing questions about food web structure and function, biodiversity, resilience and human impacts at smaller scales and for areas closer to coasts

    Longitudinal residual strain and stress-strain relationship in rat small intestine

    Get PDF
    BACKGROUND: To obtain a more detailed description of the stress-free state of the intestinal wall, longitudinal residual strain measurements are needed. Furthermore, data on longitudinal stress-strain relations in visceral organs are scarce. The present study aims to investigate the longitudinal residual strain and the longitudinal stress-strain relationship in the rat small intestine. METHODS: The longitudinal zero-stress state was obtained by cutting tissue strips parallel to the longitudinal axis of the intestine. The longitudinal residual stress was characterized by a bending angle (unit: degrees per unit length and positive when bending outwards). Residual strain was computed from the change in dimensions between the zero-stress state and the no-load state. Longitudinal stresses and strains were computed from stretch experiments in the distal ileum at luminal pressures ranging from 0–4 cmH(2)O. RESULTS: Large morphometric variations were found between the duodenum and ileum with the largest wall thickness and wall area in the duodenum and the largest inner circumference and luminal area in the distal ileum (p < 0.001). The bending angle did not differ between the duodenum and ileum (p > 0.5). The longitudinal residual strain was tensile at the serosal surface and compressive at the mucosal surface. Hence, the neutral axis was approximately in the mid-wall. The longitudinal residual strain and the bending angle was not uniform around the intestinal circumference and had the highest values on the mesenteric sides (p < 0.001). The stress-strain curves fitted well to the mono-exponential function with determination coefficients above 0.96. The α constant increased with the pressure, indicating the intestinal wall became stiffer in longitudinal direction when pressurized. CONCLUSION: Large longitudinal residual strains reside in the small intestine and showed circumferential variation. This indicates that the tissue is not uniform and cannot be treated as a homogenous material. The longitudinal stiffness of the intestinal wall increased with luminal pressure. Longitudinal residual strains must be taken into account in studies of gastrointestinal biomechanical properties

    Phenoloxidase activity acts as a mosquito innate immune response against infection with semliki forest virus

    Get PDF
    Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional PO cascade, which is activated by the bacterium Escherichia coli and the arbovirus Semliki Forest virus (SFV) (Togaviridae; Alphavirus). Production of recombinant SFV expressing the PO cascade inhibitor Egf1.0 blocked PO activity in U4.4 cell- conditioned medium, which resulted in enhanced spread of SFV. Infection of adult female Aedes aegypti by feeding mosquitoes a bloodmeal containing Egf1.0-expressing SFV increased virus replication and mosquito mortality. Collectively, these results suggest the PO cascade of mosquitoes plays an important role in immune defence against arboviruses

    Prognosis of acute low back pain: design of a prospective inception cohort study

    Get PDF
    BACKGROUND: Clinical guidelines generally portray acute low back pain as a benign and self-limiting condition. However, evidence about the clinical course of acute low back pain is contradictory and the risk of subsequently developing chronic low back pain remains uncertain. There are few high quality prognosis studies and none that have measured pain, disability and return to work over a 12 month period. This study aims to provide the first estimates of the one year prognosis of acute low back pain (pain of less than 2 weeks duration) in patients consulting primary care practitioners. A secondary aim is to identify factors that are associated with the prognosis of low back pain. METHODS/DESIGN: The study is a prospective inception cohort study. Consecutive patients consulting general medical practitioners, physiotherapists and chiropractors in the Sydney metropolitan region will complete a baseline questionnaire regarding their back pain. Subsequently these patients will be followed up by telephone 6 weeks, 3 months and 12 months after the initial consultation. Patients will be considered to have recovered from the episode of back pain if they have no pain and no limitation of activity, and have returned to pre-injury work status. Life tables will be generated to determine the one year prognosis of acute low back pain. Prognostic factors will be assessed using Cox regression. DISCUSSION: This study will provide the first estimates of the one year prognosis of acute low back pain in a representative sample of primary care patients

    Flow-Cytometric Phosphoprotein Analysis Reveals Agonist and Temporal Differences in Responses of Murine Hematopoietic Stem/Progenitor Cells

    Get PDF
    Hematopoietic stem cells (HSCs) are probably the best-studied adult tissue-restricted stem cells. Although methods for flow cytometric detection of phosphoproteins in hematopoeitic progenitors and mature cells are available, analogous protocols for HSC are lacking. We present a robust method to study intracellular signaling in immunophenotypically-defined murine HSC/progenitor cell (HPC)-enriched populations. Using this method, we uncover differences in the response dynamics of several phosphoproteins representative of the Ras/MAP-Kinase(K), PI3K, mTOR and Jak/STAT pathways in HSC/HPCs stimulated by Scf, Thpo, as well as several other important HSC/HPC agonists
    corecore