14,561 research outputs found

    Gauge parameter dependence in gauge theories (revised: subsection 2.3)

    Get PDF
    Dependence on the gauge parameters is an important issue in gauge theories: physical quantities have to be independent. Extending BRS transformations by variation of the gauge parameter into a Grassmann variable one can control gauge parameter dependence algebraically. As application we discuss the anomaly coefficient in the Slavnov-Taylor identity, SS-matrix elements, the vector two-point-function and the coefficients of renormalization group and Callan-Symanzik equation.Comment: 6, MPI-PhT/94-34, BUTP-94/1

    When a quantum measurement can be implemented locally ... and when it cannot

    Full text link
    Local operations on subsystems and classical communication between parties (LOCC) constitute the most general protocols available on spatially separated quantum systems. Every LOCC protocol implements a separable generalized measurement -- a complete measurement for which every outcome corresponds to a tensor product of operators on individual subsystems -- but it is known that there exist separable measurements that cannot be implemented by LOCC. A longstanding problem in quantum information theory is to understand the difference between LOCC and the full set of separable measurements. In this paper, we show how to construct an LOCC protocol to implement an arbitrary separable measurement, except that with those measurements for which no LOCC protocol exists, the method shows explicitly that this is the case.Comment: 21 pages, 7 figures. Extensively revised to include details of all arguments, explicitly proving all results in full rigor. Version 3 has sections reordered and other restructuring, but otherwise contains the same discussion as version

    Experimental scheme for qubit and qutrit symmetric informationally complete positive operator-valued measurements using multiport devices

    Full text link
    It is crucial for various quantum information processing tasks that the state of a quantum system can be determined reliably and efficiently from general quantum measurements. One important class of measurements for this purpose is symmetric informationally complete positive operator-valued measurements (SIC-POVMs). SIC-POVMs have the advantage of providing an unbiased estimator for the quantum state with the minimal number of outcomes needed for full tomography. By virtue of Naimark's dilation theorem, any POVM can always be realized with a suitable coupling between the system and an auxiliary system and by performing a projective measurement on the joint system. In practice, finding the appropriate coupling is rather non-trivial. Here we propose an experimental design for directly implementing SIC-POVMs using multiport devices and path-encoded qubits and qutrits, the utility of which has recently been demonstrated by several experimental groups around the world. Furthermore, we describe how these multiports can be attained in practice with an integrated photonic system composed of nested linear optical elements.Comment: 7 pages, 5 figures; v2 published versio

    Semidirect product of CCR and CAR algebras and asymptotic states in quantum electrodynamics

    Get PDF
    A C*-algebra containing the CCR and CAR algebras as its subalgebras and naturally described as the semidirect product of these algebras is discussed. A particular example of this structure is considered as a model for the algebra of asymptotic fields in quantum electrodynamics, in which Gauss' law is respected. The appearence in this algebra of a phase variable related to electromagnetic potential leads to the universal charge quantization. Translationally covariant representations of this algebra with energy-momentum spectrum in the future lightcone are investigated. It is shown that vacuum representations are necessarily nonregular with respect to total electromagnetic field. However, a class of translationally covariant, irreducible representations is constructed excplicitly, which remain as close as possible to the vacuum, but are regular at the same time. The spectrum of energy-momentum fills the whole future lightcone, but there are no vectors with energy-momentum lying on a mass hyperboloid or in the origin.Comment: 42 pages, LaTeX; minor corrections, a reference adde

    Simple Derivation of the Lindblad Equation

    Full text link
    The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is "simple" in that all it uses is the expression of a hermitian matrix in terms of its orthonormal eigenvectors and real eigenvalues. Thus, it is appropriate for students who have learned the algebra of quantum theory. Where helpful, arguments are first given in a two-dimensional hilbert space.Comment: To be published in the European Journal of Physic

    Hawking Radiation as Tunneling

    Get PDF
    We present a short and direct derivation of Hawking radiation as a tunneling process, based on particles in a dynamical geometry. The imaginary part of the action for the classically forbidden process is related to the Boltzmann factor for emission at the Hawking temperature. Because the derivation respects conservation laws, the exact spectrum is not precisely thermal. We compare and contrast the problem of spontaneous emission of charged particles from a charged conductor.Comment: LaTeX, 10 pages; v2. journal version, added section on relation of black hole radiation to electric charge emission from a charged conducting sphere; v3. restored cut referenc

    Supersymmetric Yang-Mills theories with local coupling: The supersymmetric gauge

    Get PDF
    Supersymmetric pure Yang-Mills theory is formulated with a local, i.e. space-time dependent, complex coupling in superspace. Super-Yang-Mills theories with local coupling have an anomaly, which has been first investigated in the Wess-Zumino gauge and there identified as an anomaly of supersymmetry. In a manifest supersymmetric formulation the anomaly appears in two other identities: The first one describes the non-renormalization of the topological term, the second relates the renormalization of the gauge coupling to the renormalization of the complex supercoupling. Only one of the two identities can be maintained in perturbation theory. We discuss the two versions and derive the respective beta function of the local supercoupling, which is non-holomorphic in the first version, but directly related to the coupling renormalization, and holomorphic in the second version, but has a non-trivial, i.e.anomalous, relation to the beta function of the gauge coupling.Comment: References correcte

    Local noise can enhance entanglement teleportation

    Get PDF
    Recently we have considered two-qubit teleportation via mixed states of four qubits and defined the generalized singlet fraction. For single-qubit teleportation, Badziag {\em et al.} [Phys. Rev. A {\bf 62}, 012311 (2000)] and Bandyopadhyay [Phys. Rev. A {\bf 65}, 022302 (2002)] have obtained a family of entangled two-qubit mixed states whose teleportation fidelity can be enhanced by subjecting one of the qubits to dissipative interaction with the environment via an amplitude damping channel. Here, we show that a dissipative interaction with the local environment via a pair of time-correlated amplitude damping channels can enhance fidelity of entanglement teleportation for a class of entangled four-qubit mixed states. Interestingly, we find that this enhancement corresponds to an enhancement in the quantum discord for some states.Comment: 10 page

    N=1 SYM Action and BRST Cohomology

    Full text link
    The relation between BRST cohomology and the N=1 supersymmetric Yang-Mills action in 4 dimensions is discussed. In particular, it is shown that both off and on shell N=1 SYM actions are related to a lower dimensional field polynomial by solving the descent equations, which is obtained from the cohomological analysis of linearized Slavnov-Taylor operator \B, in the framework of Algebraic Renormalization. Furthermore we show that off and on shell solutions differ only by a \B- exact term, which is a consequence of the fact that the cohomology of both cases are same.Comment: 14 Pages, LaTex. Revised version. To be published in MPL

    Fidelity and coherence measures from interference

    Get PDF
    By utilizing single particle interferometry, the fidelity or coherence of a pair of quantum states is identified with their capacity for interference. We consider processes acting on the internal degree of freedom (e.g., spin or polarization) of the interfering particle, preparing it in states ρA or ρB in the respective path of the interferometer. The maximal visibility depends on the choice of interferometer, as well as the locality or nonlocality of the preparations, but otherwise depends only on the states ρA and ρB and not the individual preparation processes themselves. This allows us to define interferometric measures which probe locality and correlation properties of spatially or temporally separated processes, and can be used to differentiate between processes that cannot be distinguished by direct process tomography using only the internal state of the particle
    corecore