92 research outputs found

    Effect of mutation supply on population dynamics and trait evolution in an experimental microbial community

    Get PDF
    Mutation supply can influence evolutionary and thereby ecological dynamics in important ways which have received little attention. Mutation supply influences features of population genetics, such as the pool of adaptive mutations, evolutionary pathways and importance of processes, such as clonal interference. The resultant trait evolutionary dynamics, in turn, can alter population size and species interactions. However, controlled experiments testing for the importance of mutation supply on rapid adaptation and thereby population and community dynamics have primarily been restricted to the first of these aspects. To close this knowledge gap, we performed a serial passage experiment with wild-type Pseudomonas fluorescens and a mutant with reduced mutation rate. Bacteria were grown at two resource levels in combination with the presence of a ciliate predator. A higher mutation supply enabled faster adaptation to the low-resource environment and anti-predatory defence. This was associated with higher population size at the ecological level and better access to high-recurrence mutational targets at the genomic level with higher mutation supply. In contrast, mutation rate did not affect growth under high-resource level. Our results demonstrate that intrinsic mutation rate influences population dynamics and trait evolution particularly when population size is constrained by extrinsic conditions.Peer reviewe

    Rapid evolution of trait correlation networks during bacterial adaptation to the rhizosphere

    Get PDF
    There is a growing awareness that traits do not evolve individually but rather are organized as modular networks of covarying traits. Although the importance of multi-trait correlation has been linked to the ability to evolve in response to new environmental conditions, the evolvability of the network itself has to date rarely been assessed experimentally. By following the evolutionary dynamics of a model bacterium adapting to plant roots, we demonstrate that the whole structure of the trait correlation network is highly dynamic. We experimentally evolved Pseudomonas protegens, a common rhizosphere dweller, on the roots of Arabidopsis thaliana. We collected bacteria at regular intervals and determined a range of traits linked to growth, stress resistance, and biotic interactions. We observed a rapid disintegration of the original trait correlation network. Ancestral populations showed a modular network, with the traits linked to resource use and stress resistance forming two largely independent modules. This network rapidly was restructured during adaptation, with a loss of the stress resistance module and the appearance of new modules out of previously disconnected traits. These results show that evolutionary dynamics can involve a deep restructuring of phenotypic trait organization, pointing to the emergence of novel life history strategies not represented in the ancestral phenotype

    Resource availability modulates biodiversity-invasion relationships by altering competitive interactions

    Get PDF
    Community diversity affects the survival of newly introduced species via resource competition. Competitive interactions can be modulated by resource availability and we hypothesized that this may alter biodiversity-invasion relationships. To study this, we assessed the growth of a bacterial invader, Ralstonia solanacearum, when introduced into communities comprised of one to five closely related resident species under different resource concentrations. The invader growth was then examined as a function of resident community richness, species composition and resource availability. We found that the relative density of the invader was reduced by increasing resident community richness and resource availability. Mechanistically, this could be explained by changes in the competitive interactions between the resident species and the invader along the resource availability gradient. At low resource availability, resident species with a high catabolic similarity with the invader efficiently reduced the invader relative density, while at high resource availability, fast-growing resident species became more important for the invader suppression. These results indicate that the relative importance of different resident community species can change dynamically along to resource availability gradient. Diverse communities could be thus more robust to invasions by providing a set of significant species that can take suppressive roles across different environments

    Initial Soil Microbiome Composition and Functioning Predetermine Future Plant Health

    Get PDF
    Plant-pathogen interactions are shaped by multiple environmental factors making it difficult to predict disease dynamics even in relatively simple agricultural monocultures. Here we explored how variation in the initial soil microbiome predicts future disease outcomes at the level of individual plants. We found that the composition and functioning of the initial soil microbiome predetermined whether the plants survived or succumbed to disease. Surviving plant microbiomes were associated with specific rare taxa, highly pathogen-suppressing Pseudomonas and Bacillus bacteria and high abundance of genes encoding antimicrobial compounds. Microbiome-mediated plant protection could subsequently be transferred to the next plant generation via soil transplantation. Together, our results suggest that small initial variation in soil microbiome composition and functioning can determine the outcomes of plant-pathogen interactions in natural field conditions

    The freshwater Sponge Ephydatia Fluviatilis harbours diverse pseudomonas species (Gammaproteobacteria, Pseudomonadales) with broad-spectrum antimicrobial activity

    Get PDF
    Bacteria are believed to play an important role in the fitness and biochemistry of sponges (Porifera). Pseudomonas species (Gammaproteobacteria, Pseudomonadales) are capable of colonizing a broad range of eukaryotic hosts, but knowledge of their diversity and function in freshwater invertebrates is rudimentary. We assessed the diversity, structure and antimicrobial activities of Pseudomonas spp. in the freshwater sponge Ephydatia fluviatilis. Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis (PCR-DGGE) fingerprints of the global regulator gene gacA revealed distinct structures between sponge-associated and free-living Pseudomonas communities, unveiling previously unsuspected diversity of these assemblages in freshwater. Community structures varied across E. fluviatilis specimens, yet specific gacA phylotypes could be detected by PCR-DGGE in almost all sponge individuals sampled over two consecutive years. By means of whole-genome fingerprinting, 39 distinct genotypes were found within 90 fluorescent Pseudomonas isolates retrieved from E. fluviatilis. High frequency of in vitro antibacterial (49%), antiprotozoan (35%) and anti-oomycetal (32%) activities was found among these isolates, contrasting less-pronounced basidiomycetal (17%) and ascomycetal (8%) antagonism. Culture extracts of highly predation-resistant isolates rapidly caused complete immobility or lysis of cells of the protozoan Colpoda steinii. Isolates tentatively identified as P. jessenii, P. protegens and P. oryzihabitans showed conspicuous inhibitory traits and correspondence with dominant sponge-associated phylotypes registered by cultivation-independent analysis. Our findings suggest that E. fluviatilis hosts both transient and persistent Pseudomonas symbionts displaying antimicrobial activities of potential ecological and biotechnological value.European Regional Development Fund (ERDF) through the COMPETE (Operational Competitiveness Programme); national funds through FCT (Foundation for Science and Technology) [PEst-C/MAR/LA0015/2011]; FCT-funded project [PTDC/BIA-MIC/3865/2012]; Federation of European Microbiological Societies (FEMS)info:eu-repo/semantics/publishedVersio

    More Than the Sum of Its Parts: Microbiome Biodiversity as a Driver of Plant Growth and Soil Health

    No full text
    Microorganisms drive several processes needed for robust plant growth and health. Harnessing microbial functions is thus key to productive and sustainable food production. Molecular methods have led to a greater understanding of the soil microbiome composition. However, translating species or gene composition into microbiome functionality remains a challenge. Community ecology concepts such as the biodiversity-ecosystem functioning framework may help predict the assembly and function of plant-associated soil microbiomes. Higher diversity can increase the number and resilience of plant-beneficial functions that can be coexpressed and unlock the expression of plant-beneficial traits that are hard to obtain from any species in isolation. We combine well-established community ecology concepts with molecular microbiology into a workable framework that may enable us to predict and enhance soil microbiome functionality to promote robust plant growth in a global change context
    corecore