12,531 research outputs found

    The coexistence of pressure waves in the operation of quartz-crystal shear-wave sensors

    Get PDF
    It is demonstrated that an AT-cut quartz crystal driven in the thickness-shear-wave mode and typically used as a sensor to monitor the viscoelastic shear-wave properties of a fluid also produce longitudinal pressure waves. Unlike the shear wave, these waves are capable of long-range propagation through the fluid and of reflection at its boundaries, notably at an outer fluid–air interface. They introduce a component into the measured electrical impedance and resonance frequency shift of the crystal, which reflects the setting up of cyclic pressure-wave resonances in the fluid. This has important implications for the practical employment of these crystal as sensors. Under appropriate conditions, as demonstrated for water and n-octane, it is possible to determine the propagating properties of sound waves in a fluid simultaneously with the viscoelastic shear-wave properties. These experiments are supported by an analysis of the appropriate hydrodynamic equations for waves in the crystal–fluid system, which predicts electrical characteristics in close agreement with those found experimentally

    Synthetic metabolism: metabolic engineering meets enzyme design.

    Get PDF
    Metabolic engineering aims at modifying the endogenous metabolic network of an organism to harness it for a useful biotechnological task, for example, production of a value-added compound. Several levels of metabolic engineering can be defined and are the topic of this review. Basic 'copy, paste and fine-tuning' approaches are limited to the structure of naturally existing pathways. 'Mix and match' approaches freely recombine the repertoire of existing enzymes to create synthetic metabolic networks that are able to outcompete naturally evolved pathways or redirect flux toward non-natural products. The space of possible metabolic solution can be further increased through approaches including 'new enzyme reactions', which are engineered on the basis of known enzyme mechanisms. Finally, by considering completely 'novel enzyme chemistries' with de novo enzyme design, the limits of nature can be breached to derive the most advanced form of synthetic pathways. We discuss the challenges and promises associated with these different metabolic engineering approaches and illuminate how enzyme engineering is expected to take a prime role in synthetic metabolic engineering for biotechnology, chemical industry and agriculture of the future

    The ascent of kimberlite: Insights from olivine

    Get PDF
    Olivine xenocrysts are ubiquitous in kimberlite deposits worldwide and derive from the disaggregation of mantle-derived peridotitic xenoliths. Here, we provide descriptions of textural features in xenocrystic olivine from kimberlite deposits at the Diavik Diamond Mine, Canada and at Igwisi Hills volcano, Tanzania. We establish a relative sequence of textural events recorded by olivine during magma ascent through the cratonic mantle lithosphere, including: xenolith disaggregation, decompression fracturing expressed as mineral- and fluid-inclusion-rich sealed and healed cracks, grain size and shape modification by chemical dissolution and abrasion, late-stage crystallization of overgrowths on olivine xenocrysts, and lastly, mechanical milling and rounding of the olivine cargo prior to emplacement. Ascent through the lithosphere operates as a “kimberlite factory” wherein progressive upward dyke propagation of the initial carbonatitic melt fractures the overlying mantle to entrain and disaggregate mantle xenoliths. Preferential assimilation of orthopyroxene (Opx) xenocrysts by the silica-undersaturated carbonatitic melt leads to deep-seated exsolution of CO2-rich fluid generating buoyancy and supporting rapid ascent. Concomitant dissolution of olivine produces irregular-shaped relict grains preserved as cores to most kimberlitic olivine. Multiple generations of decompression cracks in olivine provide evidence for a progression in ambient fluid compositions (e.g., from carbonatitic to silicic) during ascent. Numerical modelling predicts tensile failure of xenoliths (disaggregation) and olivine (cracks) over ascent distances of 2–7 km and 15–25 km, respectively, at velocities of 0.1 to >4 m s−1. Efficient assimilation of Opx during ascent results in a silica-enriched, olivine-saturated kimberlitic melt (i.e. SiO2 >20 wt.%) that crystallizes overgrowths on partially digested and abraded olivine xenocrysts. Olivine saturation is constrained to occur at pressures <1 GPa; an absence of decompression cracks within olivine overgrowths suggests depths <25 km. Late stage (<25 km) resurfacing and reshaping of olivine by particle–particle milling is indicative of turbulent flow conditions within a fully fluidized, gas-charged, crystal-rich magma

    Brain tumor classification using the diffusion tensor image segmentation (D-SEG) technique.

    Get PDF
    BACKGROUND: There is an increasing demand for noninvasive brain tumor biomarkers to guide surgery and subsequent oncotherapy. We present a novel whole-brain diffusion tensor imaging (DTI) segmentation (D-SEG) to delineate tumor volumes of interest (VOIs) for subsequent classification of tumor type. D-SEG uses isotropic (p) and anisotropic (q) components of the diffusion tensor to segment regions with similar diffusion characteristics. METHODS: DTI scans were acquired from 95 patients with low- and high-grade glioma, metastases, and meningioma and from 29 healthy subjects. D-SEG uses k-means clustering of the 2D (p,q) space to generate segments with different isotropic and anisotropic diffusion characteristics. RESULTS: Our results are visualized using a novel RGB color scheme incorporating p, q and T2-weighted information within each segment. The volumetric contribution of each segment to gray matter, white matter, and cerebrospinal fluid spaces was used to generate healthy tissue D-SEG spectra. Tumor VOIs were extracted using a semiautomated flood-filling technique and D-SEG spectra were computed within the VOI. Classification of tumor type using D-SEG spectra was performed using support vector machines. D-SEG was computationally fast and stable and delineated regions of healthy tissue from tumor and edema. D-SEG spectra were consistent for each tumor type, with constituent diffusion characteristics potentially reflecting regional differences in tissue microstructure. Support vector machines classified tumor type with an overall accuracy of 94.7%, providing better classification than previously reported. CONCLUSIONS: D-SEG presents a user-friendly, semiautomated biomarker that may provide a valuable adjunct in noninvasive brain tumor diagnosis and treatment planning

    Risks and benefits HIV preexposure prophylaxis with tenofovir/emtricitabine in an older male with comorbidities

    Get PDF
    Renal toxicity in a 73 year old man using tenofovir/emtricitabine (TDF/FTC) as pre-exposure prophylaxis (PrEP) is described. Reduced renal reserve, a higher exposure to co-medications and co-morbidities can present a challenge when assessing the risks and benefits of tenofovir based PrEP in the ageing population

    Changes in dynamic strength index in response to strength training

    Get PDF
    The primary aim of this investigation was to determine the effects of a four-week period of in-season strength training on the dynamic strength index (DSI). Pre and post a four-week period of strength-based training, twenty-four collegiate athletes (age = 19.9 ± 1.3 years; height = 1.70 ± 0.11 m; weight 68.1 ± 11.8 kg) performed three isometric mid-thigh pulls and countermovement jumps to permit the calculation of DSI. T-tests and Cohen’s effect sizes revealed a significant but small (p = 0.009, d = 0.50) decrease in DSI post-training (0.71 ± 0.13 N·N−1) compared to pre-training (0.65 ± 0.11 N·N−1); however, when divided into high and low DSI groups, differential responses were clear. The low DSI group exhibited no significant or meaningful (p = 1.000, d = 0.00) change in DSI pre to post-training (0.56 ± 0.05 N·N−1, 0.56 ± 0.09 N·N−1, respectively), whereas the high DSI group demonstrated a significant and large decrease (p = 0.034, d = 1.29) in DSI pre to post-training (0.85 ± 0.05 N·N−1, 0.74 ± 0.11 N·N−1, respectively), resulting in a significant and moderate difference (p = 0.034, d = 1.29) in the change in DSI between groups. These results demonstrate that DSI decreases in response to strength training, as expected, due to an increase in isometric mid-thigh pull peak force, with minimal change in dynamic (countermovement jump) peak forc

    The vegetation history of an Amazonian domed peatland

    Get PDF
    The peatland pole forests of the Pastaza-Marañón Foreland Basin (PMFB), Peru, are the most carbon-dense ecosystems known in Amazonia once below ground carbon stores are taken into account. Here we present the first multiproxy palaeoenvironmental record including pollen data from one of these peatlands, San Jorge in northern Peru, supported by an age model based on radiocarbon and 210Pb dating. The pollen data indicate that vegetation changes during the early phases of peat initiation resulted from autogenic succession in combination with fluvial influence. The overall pattern of vegetation change is not straightforward: the record does not reflect a process of unidirectional, progressive terrestrialization, but includes a reversal in the succession and vegetation transitions, which omit predicted successional phases. This complexity is similar to that seen in the only other existing pollen record from a PMFB peatland, at Quistococha, but contrasts with peat records from Panama and Southeast Asia where successional patterning appears more predictable. Our dating results provide the first evidence from a PMFB peatland that peat accumulation may have been discontinuous, with evidence for reduced rates of peat accumulation, or a possible hiatus, around 1300–400 cal yr BP. An ecological shift from open lake to palm swamp occurs at this time, possibly driven by climatic change. The pollen data indicate that the present pole forest vegetation at San Jorge began to assemble c. 200–150 cal yr BP. Given this young age, it is likely that the pole forest at this site remains in a state of transition

    Updating hippocampal representations: CA2 joins the circuit

    Get PDF

    The impact of Stieltjes' work on continued fractions and orthogonal polynomials

    Full text link
    Stieltjes' work on continued fractions and the orthogonal polynomials related to continued fraction expansions is summarized and an attempt is made to describe the influence of Stieltjes' ideas and work in research done after his death, with an emphasis on the theory of orthogonal polynomials

    Training Practices of Academy Rugby League and their alignment to Physical Qualities deemed important for Current and Future Performance

    Get PDF
    This study aimed to investigate rugby league coaches’ perceptions of physical qualities for current and future performance, while also establishing the training practices of Under-16 and Under-19 players. Twenty-four practitioners (rugby coach, strength and conditioning coach) working within nine Super League clubs completed a questionnaire. The questionnaire required practitioners to rank eleven physical qualities (i.e., strength, power, acceleration, maximum speed, aerobic endurance, change of direction, agility, height, body mass, lean mass and fat mass) by importance for current performance, future performance and career longevity according to playing position (forwards, backs, hookers & halves). Practitioners were asked to provide detail on the frequency and duration of each type of training session completed during a typical week throughout each phase of the season; pre-season, in-season (early), in-season (mid), and in-season (late). Typically, practitioners ranked strength, power and acceleration qualities highest, and endurance and anthropometric qualities lowest. The importance of physical qualities varied according to each playing level and position. Training practices of U16 and U19 players differed during each phase of the season, with U19 players undertaking greater training volumes than U16s players. Overall, the physical qualities coaches perceived as most important were not reflected within their training practices. Rugby league practitioners can use this information as a reference source to design long term athletic development plans, prescribe training and during player development procedures. Moreover, these data can inform and improve training practices while influencing the design of pre-season preparatory phases and in-season periods